erigon-pulse/compress/decompress.go

796 lines
21 KiB
Go
Raw Normal View History

/*
2022-05-06 13:55:11 +00:00
Copyright 2022 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package compress
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"github.com/ledgerwatch/erigon-lib/common/dbg"
"github.com/ledgerwatch/erigon-lib/mmap"
)
type word []byte // plain text word associated with code from dictionary
type codeword struct {
code uint16 // code associated with that word
len byte // Number of bits in the codes
pattern *word // Pattern corresponding to entries
ptr *patternTable // pointer to deeper level tables
next *codeword // points to next word in condensed table
}
type patternTable struct {
bitLen int // Number of bits to lookup in the table
patterns []*codeword
head *codeword
}
func newPatternTable(bitLen int) *patternTable {
pt := &patternTable{
bitLen: bitLen,
}
if bitLen <= condensePatternTableBitThreshold {
pt.patterns = make([]*codeword, 1<<pt.bitLen)
}
return pt
}
func (pt *patternTable) insertWord(cw *codeword) {
if pt.bitLen <= condensePatternTableBitThreshold {
codeStep := uint16(1) << uint16(cw.len)
codeFrom, codeTo := cw.code, cw.code+codeStep
if pt.bitLen != int(cw.len) && cw.len > 0 {
codeTo = codeFrom | (uint16(1) << pt.bitLen)
}
// cw := &codeword{code: codeFrom, pattern: &pattern, len: byte(bits), ptr: nil}
for c := codeFrom; c < codeTo; c += codeStep {
if p := pt.patterns[c]; p == nil {
pt.patterns[c] = cw
} else {
p.pattern, p.len, p.ptr, p.code = cw.pattern, cw.len, nil, c
}
}
return
}
if pt.head == nil {
cw.next = nil
pt.head = cw
return
}
var prev *codeword
for cur := pt.head; cur != nil; prev, cur = cur, cur.next {
}
cw.next = nil
prev.next = cw
}
func (pt *patternTable) condensedTableSearch(code uint16) *codeword {
if pt.bitLen <= condensePatternTableBitThreshold {
return pt.patterns[code]
}
var prev *codeword
for cur := pt.head; cur != nil; prev, cur = cur, cur.next {
if cur.code == code {
if prev != nil {
prev.next = cur.next
cur.next = pt.head
pt.head = cur
}
return cur
}
d := code - cur.code
if d&1 != 0 {
continue
}
if checkDistance(int(cur.len), int(d)) {
if prev != nil {
prev.next = cur.next
cur.next = pt.head
pt.head = cur
}
return cur
}
}
return nil
}
type posTable struct {
bitLen int // Number of bits to lookup in the table
pos []uint64
lens []byte
ptrs []*posTable
}
// Decompressor provides access to the superstrings in a file produced by a compressor
type Decompressor struct {
compressedFile string
f *os.File
mmapHandle1 []byte // mmap handle for unix (this is used to close mmap)
mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap)
data []byte // slice of correct size for the decompressor to work with
dict *patternTable
posDict *posTable
wordsStart uint64 // Offset of whether the superstrings actually start
size int64
wordsCount, emptyWordsCount uint64
}
// Tables with bitlen greater than threshold will be condensed.
// Condensing reduces size of decompression table but leads to slower reads.
// To disable condesning at all set to 9 (we dont use tables larger than 2^9)
// To enable condensing for tables of size larger 64 = 6
// for all tables = 0
// There is no sense to condense tables of size [1 - 64] in terms of performance
//
// Should be set before calling NewDecompression.
var condensePatternTableBitThreshold = 9
func SetDecompressionTableCondensity(fromBitSize int) {
condensePatternTableBitThreshold = fromBitSize
}
func NewDecompressor(compressedFile string) (*Decompressor, error) {
d := &Decompressor{
compressedFile: compressedFile,
}
var err error
defer func() {
if rec := recover(); rec != nil {
err = fmt.Errorf("decompressing file: %s, %+v, trace: %s", compressedFile, rec, dbg.Stack())
}
}()
d.f, err = os.Open(compressedFile)
if err != nil {
return nil, err
}
var stat os.FileInfo
if stat, err = d.f.Stat(); err != nil {
return nil, err
}
d.size = stat.Size()
if d.size < 32 {
return nil, fmt.Errorf("compressed file is too short: %d", d.size)
}
if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, int(d.size)); err != nil {
return nil, err
}
// read patterns from file
d.data = d.mmapHandle1[:d.size]
d.wordsCount = binary.BigEndian.Uint64(d.data[:8])
d.emptyWordsCount = binary.BigEndian.Uint64(d.data[8:16])
dictSize := binary.BigEndian.Uint64(d.data[16:24])
data := d.data[24 : 24+dictSize]
var depths []uint64
var patterns [][]byte
var i uint64
var patternMaxDepth uint64
for i < dictSize {
d, ns := binary.Uvarint(data[i:])
if d > 2048 {
return nil, fmt.Errorf("dictionary is invalid: patternMaxDepth=%d", d)
}
depths = append(depths, d)
if d > patternMaxDepth {
patternMaxDepth = d
}
i += uint64(ns)
l, n := binary.Uvarint(data[i:])
i += uint64(n)
patterns = append(patterns, data[i:i+l])
//fmt.Printf("depth = %d, pattern = [%x]\n", d, data[i:i+l])
i += l
}
if dictSize > 0 {
var bitLen int
if patternMaxDepth > 9 {
bitLen = 9
} else {
bitLen = int(patternMaxDepth)
}
// fmt.Printf("pattern maxDepth=%d\n", tree.maxDepth)
d.dict = newPatternTable(bitLen)
buildCondensedPatternTable(d.dict, depths, patterns, 0, 0, 0, patternMaxDepth)
}
// read positions
pos := 24 + dictSize
dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8])
data = d.data[pos+8 : pos+8+dictSize]
var posDepths []uint64
var poss []uint64
var posMaxDepth uint64
i = 0
for i < dictSize {
d, ns := binary.Uvarint(data[i:])
if d > 2048 {
return nil, fmt.Errorf("dictionary is invalid: posMaxDepth=%d", d)
}
posDepths = append(posDepths, d)
if d > posMaxDepth {
posMaxDepth = d
}
i += uint64(ns)
pos, n := binary.Uvarint(data[i:])
i += uint64(n)
poss = append(poss, pos)
}
if dictSize > 0 {
var bitLen int
if posMaxDepth > 9 {
bitLen = 9
} else {
bitLen = int(posMaxDepth)
}
//fmt.Printf("pos maxDepth=%d\n", tree.maxDepth)
tableSize := 1 << bitLen
d.posDict = &posTable{
bitLen: bitLen,
pos: make([]uint64, tableSize),
lens: make([]byte, tableSize),
ptrs: make([]*posTable, tableSize),
}
buildPosTable(posDepths, poss, d.posDict, 0, 0, 0, posMaxDepth)
}
d.wordsStart = pos + 8 + dictSize
return d, nil
}
func buildCondensedPatternTable(table *patternTable, depths []uint64, patterns [][]byte, code uint16, bits int, depth uint64, maxDepth uint64) int {
if len(depths) == 0 {
return 0
}
if depth == depths[0] {
pattern := word(patterns[0])
//fmt.Printf("depth=%d, maxDepth=%d, code=[%b], codeLen=%d, pattern=[%x]\n", depth, maxDepth, code, bits, pattern)
cw := &codeword{code: code, pattern: &pattern, len: byte(bits), ptr: nil}
// table.patterns = append(table.patterns, cw)
table.insertWord(cw)
return 1
}
if bits == 9 {
var bitLen int
if maxDepth > 9 {
bitLen = 9
} else {
bitLen = int(maxDepth)
}
newTable := newPatternTable(bitLen)
cw := &codeword{code: code, pattern: nil, len: byte(0), ptr: newTable}
// table.patterns = append(table.patterns, &codeword{code: code, pattern: nil, len: byte(0), ptr: newTable})
table.insertWord(cw)
return buildCondensedPatternTable(newTable, depths, patterns, 0, 0, depth, maxDepth)
2022-08-01 05:37:10 +00:00
}
b0 := buildCondensedPatternTable(table, depths, patterns, code, bits+1, depth+1, maxDepth-1)
return b0 + buildCondensedPatternTable(table, depths[b0:], patterns[b0:], (uint16(1)<<bits)|code, bits+1, depth+1, maxDepth-1)
}
func buildPosTable(depths []uint64, poss []uint64, table *posTable, code uint16, bits int, depth uint64, maxDepth uint64) int {
if len(depths) == 0 {
return 0
}
if depth == depths[0] {
p := poss[0]
//fmt.Printf("depth=%d, maxDepth=%d, code=[%b], codeLen=%d, pos=%d\n", depth, maxDepth, code, bits, p)
2022-08-10 12:08:09 +00:00
if table.bitLen == bits {
table.pos[code] = p
table.lens[code] = byte(bits)
table.ptrs[code] = nil
} else {
codeStep := uint16(1) << bits
codeFrom := code
codeTo := code | (uint16(1) << table.bitLen)
for c := codeFrom; c < codeTo; c += codeStep {
table.pos[c] = p
table.lens[c] = byte(bits)
table.ptrs[c] = nil
}
}
return 1
}
if bits == 9 {
var bitLen int
if maxDepth > 9 {
bitLen = 9
} else {
bitLen = int(maxDepth)
}
tableSize := 1 << bitLen
newTable := &posTable{
bitLen: bitLen,
pos: make([]uint64, tableSize),
lens: make([]byte, tableSize),
ptrs: make([]*posTable, tableSize),
}
table.pos[code] = 0
table.lens[code] = byte(0)
table.ptrs[code] = newTable
return buildPosTable(depths, poss, newTable, 0, 0, depth, maxDepth)
}
b0 := buildPosTable(depths, poss, table, code, bits+1, depth+1, maxDepth-1)
return b0 + buildPosTable(depths[b0:], poss[b0:], table, (uint16(1)<<bits)|code, bits+1, depth+1, maxDepth-1)
}
func (d *Decompressor) Size() int64 {
return d.size
}
func (d *Decompressor) Close() error {
if err := mmap.Munmap(d.mmapHandle1, d.mmapHandle2); err != nil {
return err
}
if err := d.f.Close(); err != nil {
return err
}
return nil
}
func (d *Decompressor) FilePath() string { return d.compressedFile }
2022-08-10 12:00:19 +00:00
// WithReadAhead - Expect read in sequential order. (Hence, pages in the given range can be aggressively read ahead, and may be freed soon after they are accessed.)
2022-02-01 04:19:11 +00:00
func (d *Decompressor) WithReadAhead(f func() error) error {
_ = mmap.MadviseSequential(d.mmapHandle1)
2022-10-04 09:51:51 +00:00
//_ = mmap.MadviseWillNeed(d.mmapHandle1)
2022-02-01 04:19:11 +00:00
defer mmap.MadviseRandom(d.mmapHandle1)
return f()
}
// DisableReadAhead - usage: `defer d.EnableReadAhead().DisableReadAhead()`. Please don't use this funcs without `defer` to avoid leak.
func (d *Decompressor) DisableReadAhead() { _ = mmap.MadviseRandom(d.mmapHandle1) }
func (d *Decompressor) EnableReadAhead() *Decompressor {
_ = mmap.MadviseSequential(d.mmapHandle1)
return d
}
2022-10-04 09:51:51 +00:00
func (d *Decompressor) EnableMadvNormal() *Decompressor {
_ = mmap.MadviseNormal(d.mmapHandle1)
return d
}
func (d *Decompressor) EnableWillNeed() *Decompressor {
_ = mmap.MadviseWillNeed(d.mmapHandle1)
return d
}
// Getter represent "reader" or "interator" that can move accross the data of the decompressor
// The full state of the getter can be captured by saving dataP, and dataBit
type Getter struct {
data []byte
dataP uint64
dataBit int // Value 0..7 - position of the bit
patternDict *patternTable
posDict *posTable
fName string
2022-05-18 07:36:01 +00:00
trace bool
}
2022-05-18 07:36:01 +00:00
func (g *Getter) Trace(t bool) { g.trace = t }
func (g *Getter) nextPos(clean bool) uint64 {
if clean {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
}
table := g.posDict
if table.bitLen == 0 {
return table.pos[0]
}
var l byte
var pos uint64
for l == 0 {
code := uint16(g.data[g.dataP]) >> g.dataBit
if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) {
code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit)
}
code &= (uint16(1) << table.bitLen) - 1
l = table.lens[code]
if l == 0 {
table = table.ptrs[code]
g.dataBit += 9
} else {
g.dataBit += int(l)
pos = table.pos[code]
}
g.dataP += uint64(g.dataBit / 8)
g.dataBit = g.dataBit % 8
}
return pos
}
func (g *Getter) nextPattern() []byte {
table := g.patternDict
if table.bitLen == 0 {
return *table.patterns[0].pattern
}
var l byte
var pattern []byte
for l == 0 {
code := uint16(g.data[g.dataP]) >> g.dataBit
if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) {
code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit)
}
code &= (uint16(1) << table.bitLen) - 1
cw := table.condensedTableSearch(code)
l = cw.len
if l == 0 {
table = cw.ptr
g.dataBit += 9
} else {
g.dataBit += int(l)
pattern = *cw.pattern
}
g.dataP += uint64(g.dataBit / 8)
g.dataBit = g.dataBit % 8
}
return pattern
}
var condensedWordDistances = buildCondensedWordDistances()
func checkDistance(power int, d int) bool {
for _, dist := range condensedWordDistances[power] {
if dist == d {
return true
}
}
return false
}
func buildCondensedWordDistances() [][]int {
dist2 := make([][]int, 10)
for i := 1; i <= 9; i++ {
dl := make([]int, 0)
for j := 1 << i; j < 512; j += 1 << i {
dl = append(dl, j)
}
dist2[i] = dl
}
return dist2
}
func (g *Getter) Size() int {
return len(g.data)
}
func (d *Decompressor) Count() int { return int(d.wordsCount) }
func (d *Decompressor) EmptyWordsCount() int { return int(d.emptyWordsCount) }
// MakeGetter creates an object that can be used to access superstrings in the decompressor's file
// Getter is not thread-safe, but there can be multiple getters used simultaneously and concurrently
// for the same decompressor
func (d *Decompressor) MakeGetter() *Getter {
return &Getter{
posDict: d.posDict,
data: d.data[d.wordsStart:],
patternDict: d.dict,
fName: d.compressedFile,
}
}
func (g *Getter) Reset(offset uint64) {
g.dataP = offset
g.dataBit = 0
}
func (g *Getter) HasNext() bool {
return g.dataP < uint64(len(g.data))
}
// Next extracts a compressed word from current offset in the file
// and appends it to the given buf, returning the result of appending
// After extracting next word, it moves to the beginning of the next one
func (g *Getter) Next(buf []byte) ([]byte, uint64) {
savePos := g.dataP
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
if wordLen == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
2021-11-07 07:32:01 +00:00
return buf, g.dataP
}
bufPos := len(buf) // Tracking position in buf where to insert part of the word
lastUncovered := len(buf)
if len(buf)+int(wordLen) > cap(buf) {
newBuf := make([]byte, len(buf)+int(wordLen))
copy(newBuf, buf)
buf = newBuf
} else {
// Expand buffer
buf = buf[:len(buf)+int(wordLen)]
2021-11-07 07:32:01 +00:00
}
// Loop below fills in the patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another
pt := g.nextPattern()
copy(buf[bufPos:], pt)
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
postLoopPos := g.dataP
g.dataP = savePos
g.dataBit = 0
g.nextPos(true /* clean */) // Reset the state of huffman reader
bufPos = lastUncovered // Restore to the beginning of buf
// Loop below fills the data which is not in the patterns
for pos := g.nextPos(false); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
copy(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif])
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
2021-11-07 07:32:01 +00:00
}
if int(wordLen) > lastUncovered {
dif := wordLen - uint64(lastUncovered)
copy(buf[lastUncovered:wordLen], g.data[postLoopPos:postLoopPos+dif])
postLoopPos += dif
2021-11-07 07:32:01 +00:00
}
g.dataP = postLoopPos
g.dataBit = 0
return buf, postLoopPos
}
func (g *Getter) NextUncompressed() ([]byte, uint64) {
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
if wordLen == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return g.data[g.dataP:g.dataP], g.dataP
}
g.nextPos(false)
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
pos := g.dataP
g.dataP += wordLen
return g.data[pos:g.dataP], g.dataP
}
// Skip moves offset to the next word and returns the new offset.
func (g *Getter) Skip() uint64 {
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
if l == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return g.dataP
}
wordLen := int(l)
var add uint64
var bufPos int
var lastUncovered int
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if wordLen < bufPos {
panic(fmt.Sprintf("likely .idx is invalid: %s", g.fName))
}
if bufPos > lastUncovered {
add += uint64(bufPos - lastUncovered)
}
lastUncovered = bufPos + len(g.nextPattern())
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
if int(l) > lastUncovered {
add += l - uint64(lastUncovered)
}
// Uncovered characters
g.dataP += add
return g.dataP
}
func (g *Getter) SkipUncompressed() uint64 {
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
if wordLen == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return g.dataP
}
g.nextPos(false)
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
g.dataP += wordLen
return g.dataP
}
// Match returns true and next offset if the word at current offset fully matches the buf
// returns false and current offset otherwise.
func (g *Getter) Match(buf []byte) (bool, uint64) {
savePos := g.dataP
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
lenBuf := len(buf)
if wordLen == 0 || int(wordLen) != lenBuf {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
if lenBuf != 0 {
g.dataP, g.dataBit = savePos, 0
}
return lenBuf == int(wordLen), g.dataP
}
var bufPos int
// In the first pass, we only check patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
pattern := g.nextPattern()
if lenBuf < bufPos+len(pattern) || !bytes.Equal(buf[bufPos:bufPos+len(pattern)], pattern) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
postLoopPos := g.dataP
g.dataP, g.dataBit = savePos, 0
g.nextPos(true /* clean */) // Reset the state of huffman decoder
// Second pass - we check spaces not covered by the patterns
var lastUncovered int
bufPos = 0
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
if lenBuf < bufPos || !bytes.Equal(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
}
if int(wordLen) > lastUncovered {
dif := wordLen - uint64(lastUncovered)
if lenBuf < int(wordLen) || !bytes.Equal(buf[lastUncovered:wordLen], g.data[postLoopPos:postLoopPos+dif]) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
postLoopPos += dif
}
if lenBuf != int(wordLen) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
g.dataP, g.dataBit = postLoopPos, 0
return true, postLoopPos
}
// MatchPrefix only checks if the word at the current offset has a buf prefix. Does not move offset to the next word.
func (g *Getter) MatchPrefix(prefix []byte) bool {
savePos := g.dataP
defer func() {
g.dataP, g.dataBit = savePos, 0
}()
wordLen := g.nextPos(true /* clean */)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
prefixLen := len(prefix)
if wordLen == 0 || int(wordLen) < prefixLen {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
if prefixLen != 0 {
g.dataP, g.dataBit = savePos, 0
}
return prefixLen == int(wordLen)
}
2022-05-18 07:36:01 +00:00
var bufPos int
// In the first pass, we only check patterns
// Only run this loop as far as the prefix goes, there is no need to check further
2022-05-18 07:36:01 +00:00
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
pattern := g.nextPattern()
var comparisonLen int
2022-05-18 07:36:01 +00:00
if prefixLen < bufPos+len(pattern) {
comparisonLen = prefixLen - bufPos
} else {
comparisonLen = len(pattern)
}
2022-05-18 07:36:01 +00:00
if bufPos < prefixLen {
if !bytes.Equal(prefix[bufPos:bufPos+comparisonLen], pattern[:comparisonLen]) {
return false
}
}
}
2022-05-18 07:36:01 +00:00
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
postLoopPos := g.dataP
g.dataP, g.dataBit = savePos, 0
g.nextPos(true /* clean */) // Reset the state of huffman decoder
// Second pass - we check spaces not covered by the patterns
var lastUncovered int
2022-05-18 07:36:01 +00:00
bufPos = 0
for pos := g.nextPos(false /* clean */); pos != 0 && lastUncovered < prefixLen; pos = g.nextPos(false) {
2022-05-18 07:36:01 +00:00
bufPos += int(pos) - 1
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
var comparisonLen int
if prefixLen < lastUncovered+int(dif) {
comparisonLen = prefixLen - lastUncovered
} else {
comparisonLen = int(dif)
}
if !bytes.Equal(prefix[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) {
return false
}
postLoopPos += dif
}
2022-05-18 07:36:01 +00:00
lastUncovered = bufPos + len(g.nextPattern())
}
if prefixLen > lastUncovered && int(wordLen) > lastUncovered {
dif := wordLen - uint64(lastUncovered)
var comparisonLen int
if prefixLen < int(wordLen) {
comparisonLen = prefixLen - lastUncovered
} else {
comparisonLen = int(dif)
}
if !bytes.Equal(prefix[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) {
return false
}
}
return true
}