erigon-pulse/cmd/state/py/main.py

92 lines
3.3 KiB
Python
Raw Normal View History

import csv
import struct
import plotly.express as px
import pandas as pd
import lmdb
import sys
import chain
import dbutils
import common
2020-08-10 09:36:46 +00:00
# apt install python3-snappy libgmp3-dev && pip3 install trinity lmdb pandas plotly
cmd = sys.argv[1]
chaindata = sys.argv[2]
env = lmdb.open(chaindata, max_dbs=100, readonly=True, subdir=True, map_size=32 * 1024 * 1024 * 1024, create=False)
analyticsEnv = lmdb.open("analytics", max_dbs=100, readonly=False, subdir=True, map_size=32 * 1024 * 1024 * 1024,
create=True)
env.reader_check() # clear stale reads
def allBuckets(env):
buckets = []
root = env.open_db(None, create=False)
with env.begin(write=False) as txn:
2020-08-13 05:31:17 +00:00
with txn.cursor(root) as curs:
for i, (k, v) in enumerate(curs.iternext()):
buckets.append(k.decode("utf-8"))
return buckets
if cmd == "stats":
data = {"name": [], "size": []}
for bucket in allBuckets(env):
b = env.open_db(bucket.encode(), create=False)
with env.begin(write=False) as txn:
stat = txn.stat(b)
2020-08-28 07:19:34 +00:00
size = stat['psize'] * (stat['branch_pages'] + stat['leaf_pages'] + stat['overflow_pages'])
print("%s: %dMb %dM" % (bucket, size/1024/1024, stat['entries']/1000/1000))
2020-08-28 07:19:34 +00:00
# data["name"].append(bucket)
# data["size"].append(stat['psize'] * (stat['branch_pages'] + stat['leaf_pages'] + stat['overflow_pages']))
# df = pd.DataFrame.from_dict(data)
# fig = px.pie(df, values='size', names='name', title='Buckets size')
# fig.show()
elif cmd == "gas_limits":
StartedWhenBlockNumber = chain.lastBlockNumber(env)
b = env.open_db(dbutils.HeaderPrefix, create=False)
mainHashes = analyticsEnv.open_db("gl_main_hashes".encode(), create=True)
def collect_main_hashes(readTx, writeTx):
with readTx.cursor(b) as curs:
for i, (k, v) in enumerate(curs.iternext()):
timestamp = common.bytesToUint64(k[:common.BlockNumberLength])
if timestamp > StartedWhenBlockNumber:
break
if not dbutils.isHeaderHashKey(k):
continue
mainHash = bytes(v)
writeTx.put(mainHash, common.uint64ToBytes(0), mainHashes)
def gas_limits(readTx, writeTx, file):
blockNum = 0
with readTx.cursor(b) as curs:
for i, (k, v) in enumerate(curs.iternext()):
timestamp = common.bytesToUint64(k[:common.BlockNumberLength])
if timestamp > StartedWhenBlockNumber:
break
if not dbutils.isHeaderKey(k):
continue
val = writeTx.get(k[common.BlockNumberLength:], None, mainHashes)
if val is None:
continue
header = chain.decode_block_header(v)
file.writerow([blockNum, header.GasLimit])
blockNum += 1
with env.begin(write=False) as txn:
with analyticsEnv.begin(write=True) as writeTx:
with open('gas_limits.csv', 'w') as csvfile:
collect_main_hashes(txn, writeTx)
print("Preloaded: %d" % writeTx.stat(mainHashes)["entries"])
gas_limits(txn, writeTx, csv.writer(csvfile))
else:
print("unknown command %s" % cmd)