erigon-pulse/erigon-lib/rlp2/commitment.go

285 lines
6.6 KiB
Go
Raw Normal View History

/*
Copyright 2022 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package rlp
import "io"
// RLP-related utilities necessary for computing commitments for state root hash
// generateRlpPrefixLenDouble calculates the length of RLP prefix to encode a string of bytes of length l "twice",
// meaning that it is the prefix for rlp(rlp(data))
func generateRlpPrefixLenDouble(l int, firstByte byte) int {
if l < 2 {
// firstByte only matters when there is 1 byte to encode
if firstByte >= 0x80 {
return 2
}
return 0
}
if l < 55 {
return 2
}
if l < 56 { // 2 + 1
return 3
}
if l < 254 {
return 4
}
if l < 256 {
return 5
}
if l < 65533 {
return 6
}
if l < 65536 {
return 7
}
return 8
}
func multiByteHeaderPrefixOfLen(l int) byte {
// > If a string is more than 55 bytes long, the
// > RLP encoding consists of a single byte with value 0xB7 plus the length
// > of the length of the string in binary form, followed by the length of
// > the string, followed by the string. For example, a length-1024 string
// > would be encoded as 0xB90400 followed by the string. The range of
// > the first byte is thus [0xB8, 0xBF].
//
// see package rlp/decode.go:887
return byte(0xB7 + l)
}
func generateByteArrayLen(buffer []byte, pos int, l int) int {
if l < 56 {
buffer[pos] = byte(0x80 + l)
pos++
} else if l < 256 {
// len(vn) can be encoded as 1 byte
buffer[pos] = multiByteHeaderPrefixOfLen(1)
pos++
buffer[pos] = byte(l)
pos++
} else if l < 65536 {
// len(vn) is encoded as two bytes
buffer[pos] = multiByteHeaderPrefixOfLen(2)
pos++
buffer[pos] = byte(l >> 8)
pos++
buffer[pos] = byte(l & 255)
pos++
} else {
// len(vn) is encoded as three bytes
buffer[pos] = multiByteHeaderPrefixOfLen(3)
pos++
buffer[pos] = byte(l >> 16)
pos++
buffer[pos] = byte((l >> 8) & 255)
pos++
buffer[pos] = byte(l & 255)
pos++
}
return pos
}
func generateByteArrayLenDouble(buffer []byte, pos int, l int) int {
if l < 55 {
// After first wrapping, the length will be l + 1 < 56
buffer[pos] = byte(0x80 + l + 1)
pos++
buffer[pos] = byte(0x80 + l)
pos++
} else if l < 56 {
buffer[pos] = multiByteHeaderPrefixOfLen(1)
pos++
buffer[pos] = byte(l + 1)
pos++
buffer[pos] = byte(0x80 + l)
pos++
} else if l < 254 {
// After first wrapping, the length will be l + 2 < 256
buffer[pos] = multiByteHeaderPrefixOfLen(1)
pos++
buffer[pos] = byte(l + 2)
pos++
buffer[pos] = multiByteHeaderPrefixOfLen(1)
pos++
buffer[pos] = byte(l)
pos++
} else if l < 256 {
// First wrapping is 2 bytes, second wrapping 3 bytes
buffer[pos] = multiByteHeaderPrefixOfLen(2)
pos++
buffer[pos] = byte((l + 2) >> 8)
pos++
buffer[pos] = byte((l + 2) & 255)
pos++
buffer[pos] = multiByteHeaderPrefixOfLen(1)
pos++
buffer[pos] = byte(l)
pos++
} else if l < 65533 {
// Both wrappings are 3 bytes
buffer[pos] = multiByteHeaderPrefixOfLen(2)
pos++
buffer[pos] = byte((l + 3) >> 8)
pos++
buffer[pos] = byte((l + 3) & 255)
pos++
buffer[pos] = multiByteHeaderPrefixOfLen(2)
pos++
buffer[pos] = byte(l >> 8)
pos++
buffer[pos] = byte(l & 255)
pos++
} else if l < 65536 {
// First wrapping is 3 bytes, second wrapping is 4 bytes
buffer[pos] = multiByteHeaderPrefixOfLen(3)
pos++
buffer[pos] = byte((l + 3) >> 16)
pos++
buffer[pos] = byte(((l + 3) >> 8) & 255)
pos++
buffer[pos] = byte((l + 3) & 255)
pos++
buffer[pos] = multiByteHeaderPrefixOfLen(2)
pos++
buffer[pos] = byte((l >> 8) & 255)
pos++
buffer[pos] = byte(l & 255)
pos++
} else {
// Both wrappings are 4 bytes
buffer[pos] = multiByteHeaderPrefixOfLen(3)
pos++
buffer[pos] = byte((l + 4) >> 16)
pos++
buffer[pos] = byte(((l + 4) >> 8) & 255)
pos++
buffer[pos] = byte((l + 4) & 255)
pos++
buffer[pos] = multiByteHeaderPrefixOfLen(3)
pos++
buffer[pos] = byte(l >> 16)
pos++
buffer[pos] = byte((l >> 8) & 255)
pos++
buffer[pos] = byte(l & 255)
pos++
}
return pos
}
func generateRlpPrefixLen(l int) int {
if l < 2 {
return 0
}
if l < 56 {
return 1
}
if l < 256 {
return 2
}
if l < 65536 {
return 3
}
return 4
}
// RlpSerializable is a value that can be double-RLP coded.
type RlpSerializable interface {
ToDoubleRLP(io.Writer, []byte) error
DoubleRLPLen() int
RawBytes() []byte
}
type RlpSerializableBytes []byte
func (b RlpSerializableBytes) ToDoubleRLP(w io.Writer, prefixBuf []byte) error {
return encodeBytesAsRlpToWriter(b, w, generateByteArrayLenDouble, prefixBuf)
}
func (b RlpSerializableBytes) RawBytes() []byte {
return b
}
func (b RlpSerializableBytes) DoubleRLPLen() int {
if len(b) < 1 {
return 0
}
return generateRlpPrefixLenDouble(len(b), b[0]) + len(b)
}
type RlpEncodedBytes []byte
func (b RlpEncodedBytes) ToDoubleRLP(w io.Writer, prefixBuf []byte) error {
return encodeBytesAsRlpToWriter(b, w, generateByteArrayLen, prefixBuf)
}
func (b RlpEncodedBytes) RawBytes() []byte {
return b
}
func (b RlpEncodedBytes) DoubleRLPLen() int {
return generateRlpPrefixLen(len(b)) + len(b)
}
func encodeBytesAsRlpToWriter(source []byte, w io.Writer, prefixGenFunc func([]byte, int, int) int, prefixBuf []byte) error {
// > 1 byte, write a prefix or prefixes first
if len(source) > 1 || (len(source) == 1 && source[0] >= 0x80) {
prefixLen := prefixGenFunc(prefixBuf, 0, len(source))
if _, err := w.Write(prefixBuf[:prefixLen]); err != nil {
return err
}
}
_, err := w.Write(source)
return err
}
func EncodeByteArrayAsRlp(raw []byte, w io.Writer, prefixBuf []byte) (int, error) {
err := encodeBytesAsRlpToWriter(raw, w, generateByteArrayLen, prefixBuf)
if err != nil {
return 0, err
}
return generateRlpPrefixLen(len(raw)) + len(raw), nil
}
func GenerateStructLen(buffer []byte, l int) int {
if l < 56 {
buffer[0] = byte(192 + l)
return 1
}
if l < 256 {
// l can be encoded as 1 byte
buffer[1] = byte(l)
buffer[0] = byte(247 + 1)
return 2
}
if l < 65536 {
buffer[2] = byte(l & 255)
buffer[1] = byte(l >> 8)
buffer[0] = byte(247 + 2)
return 3
}
buffer[3] = byte(l & 255)
buffer[2] = byte((l >> 8) & 255)
buffer[1] = byte(l >> 16)
buffer[0] = byte(247 + 3)
return 4
}