erigon-pulse/compress/decompress.go

236 lines
6.1 KiB
Go
Raw Normal View History

/*
Copyright 2021 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package compress
import (
"encoding/binary"
"os"
"github.com/ledgerwatch/erigon-lib/mmap"
)
// Decompressor provides access to the words in a file produced by a compressor
type Decompressor struct {
compressedFile string
f *os.File
mmapHandle1 []byte // mmap handle for unix (this is used to close mmap)
mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap)
data []byte // slice of correct size for the decompressor to work with
dict Dictionary
posDict Dictionary
wordsStart uint64 // Offset of whether the words actually start
}
func NewDecompressor(compressedFile string) (*Decompressor, error) {
d := &Decompressor{
compressedFile: compressedFile,
}
var err error
d.f, err = os.Open(compressedFile)
if err != nil {
return nil, err
}
var stat os.FileInfo
if stat, err = d.f.Stat(); err != nil {
return nil, err
}
size := int(stat.Size())
if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, size); err != nil {
return nil, err
}
d.data = d.mmapHandle1[:size]
dictSize := binary.BigEndian.Uint64(d.data[:8])
d.dict.rootOffset = binary.BigEndian.Uint64(d.data[8:16])
d.dict.cutoff = binary.BigEndian.Uint64(d.data[16:24])
d.dict.data = d.data[24 : 24+dictSize]
pos := 24 + dictSize
dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8])
d.posDict.rootOffset = binary.BigEndian.Uint64(d.data[pos+8 : pos+16])
d.posDict.cutoff = binary.BigEndian.Uint64(d.data[pos+16 : pos+24])
d.posDict.data = d.data[pos+24 : pos+24+dictSize]
d.wordsStart = pos + 24 + dictSize
return d, nil
}
func (d *Decompressor) Close() error {
if err := mmap.Munmap(d.mmapHandle1, d.mmapHandle2); err != nil {
return err
}
if err := d.f.Close(); err != nil {
return err
}
return nil
}
type Dictionary struct {
data []byte
rootOffset uint64
cutoff uint64
}
type Getter struct {
data []byte
dataP uint64
patternDict *Dictionary
posDict *Dictionary
offset uint64
b byte
mask byte
uncovered []int // Buffer for uncovered portions of the word
word []byte
}
func (g *Getter) zero() bool {
g.offset, _ = binary.Uvarint(g.patternDict.data[g.offset:])
return g.offset < g.patternDict.cutoff
}
func (g *Getter) one() bool {
_, n := binary.Uvarint(g.patternDict.data[g.offset:])
g.offset, _ = binary.Uvarint(g.patternDict.data[g.offset+uint64(n):])
return g.offset < g.patternDict.cutoff
}
func (g *Getter) posZero() bool {
g.offset, _ = binary.Uvarint(g.posDict.data[g.offset:])
return g.offset < g.posDict.cutoff
}
func (g *Getter) posOne() bool {
_, n := binary.Uvarint(g.posDict.data[g.offset:])
g.offset, _ = binary.Uvarint(g.posDict.data[g.offset+uint64(n):])
return g.offset < g.posDict.cutoff
}
func (g *Getter) pattern() []byte {
l, n := binary.Uvarint(g.patternDict.data[g.offset:])
return g.patternDict.data[g.offset+uint64(n) : g.offset+uint64(n)+l]
}
func (g *Getter) pos() uint64 {
pos, _ := binary.Uvarint(g.posDict.data[g.offset:])
return pos
}
func (g *Getter) nextPos(clean bool) uint64 {
if clean {
g.mask = 0
}
g.offset = g.posDict.rootOffset
if g.offset < g.posDict.cutoff {
return g.pos()
}
for {
if g.mask == 0 {
g.mask = 1
g.b = g.data[g.dataP]
g.dataP++
}
if g.b&g.mask == 0 {
g.mask <<= 1
if g.posZero() {
break
}
} else {
g.mask <<= 1
if g.posOne() {
break
}
}
}
return g.pos()
}
func (g *Getter) nextPattern() []byte {
g.offset = g.patternDict.rootOffset
if g.offset < g.patternDict.cutoff {
return g.pattern()
}
for {
if g.mask == 0 {
g.mask = 1
g.b = g.data[g.dataP]
g.dataP++
}
if g.b&g.mask == 0 {
g.mask <<= 1
if g.zero() {
break
}
} else {
g.mask <<= 1
if g.one() {
break
}
}
}
return g.pattern()
}
// MakeGetter creates an object that can be used to access words in the decompressor's file
// Getter is not thread-safe, but there can be multiple getters used simultaneously and concrently
// for the same decompressor
func (d *Decompressor) MakeGetter() *Getter {
return &Getter{patternDict: &d.dict, posDict: &d.posDict, data: d.data[d.wordsStart:], uncovered: make([]int, 0, 128)}
}
func (g *Getter) Reset(offset uint64) {
g.dataP = offset
}
func (g *Getter) HasNext() bool {
return g.dataP < uint64(len(g.data))
}
// Next extracts a compressed word from current offset in the file
// and appends it to the given buf, returning the result of appending
// After extracting next word, it moves to the beginning of the next one
func (g *Getter) Next(buf []byte) ([]byte, uint64) {
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
2021-11-07 07:32:01 +00:00
if l == 0 {
return buf, g.dataP
}
if int(l) > len(g.word) {
g.word = make([]byte, l)
}
var pos uint64
var lastPos int
var lastUncovered int
g.uncovered = g.uncovered[:0]
for pos = g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
intPos := lastPos + int(pos) - 1
lastPos = intPos
pattern := g.nextPattern()
copy(g.word[intPos:], pattern)
if intPos > lastUncovered {
g.uncovered = append(g.uncovered, lastUncovered, intPos)
}
2021-11-07 07:32:01 +00:00
lastUncovered = intPos + len(pattern)
}
if int(l) > lastUncovered {
g.uncovered = append(g.uncovered, lastUncovered, int(l))
}
// Uncovered characters
for i := 0; i < len(g.uncovered); i += 2 {
copy(g.word[g.uncovered[i]:g.uncovered[i+1]], g.data[g.dataP:])
g.dataP += uint64(g.uncovered[i+1] - g.uncovered[i])
}
2021-11-07 07:32:01 +00:00
buf = append(buf, g.word[:l]...)
return buf, g.dataP
}