erigon-pulse/turbo/trie/encoding.go

216 lines
5.5 KiB
Go
Raw Normal View History

2015-07-07 02:54:22 +02:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 02:54:22 +02:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 02:54:22 +02:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 02:54:22 +02:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 02:54:22 +02:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 02:54:22 +02:00
2014-10-31 14:45:03 +01:00
package trie
2014-02-14 23:56:09 +01:00
import (
"io"
"github.com/ledgerwatch/erigon/rlp"
)
// Trie keys are dealt with in three distinct encodings:
//
// KEYBYTES encoding contains the actual key and nothing else. This encoding is the
// input to most API functions. It is a packed encoding of hex sequences
// with 2 nibbles per byte.
//
// HEX encoding contains one byte for each nibble of the key and an optional trailing
// 'terminator' byte of value 0x10 which indicates whether or not the node at the key
// contains a value. Hex key encoding is used for nodes loaded in memory because it's
// convenient to access.
//
// COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
// encoding" there) and contains the bytes of the key and a flag. The high nibble of the
// first byte contains the flag; the lowest bit encoding the oddness of the length and
// the second-lowest encoding whether the node at the key is a value node. The low nibble
// of the first byte is zero in the case of an even number of nibbles and the first nibble
// in the case of an odd number. All remaining nibbles (now an even number) fit properly
// into the remaining bytes. Compact encoding is used for nodes stored on disk.
func hexToCompact(hex []byte) []byte {
2015-07-06 01:19:48 +02:00
terminator := byte(0)
if hasTerm(hex) {
2014-02-14 23:56:09 +01:00
terminator = 1
hex = hex[:len(hex)-1]
2014-02-14 23:56:09 +01:00
}
buf := make([]byte, len(hex)/2+1)
buf[0] = terminator << 5 // the flag byte
if len(hex)&1 == 1 {
buf[0] |= 1 << 4 // odd flag
buf[0] |= hex[0] // first nibble is contained in the first byte
hex = hex[1:]
2014-02-14 23:56:09 +01:00
}
decodeNibbles(hex, buf[1:])
return buf
2014-02-14 23:56:09 +01:00
}
func compactToHex(compact []byte) []byte {
if len(compact) == 0 {
return compact
}
base := keybytesToHex(compact)
// delete terminator flag
if base[0] < 2 {
base = base[:len(base)-1]
2014-02-14 23:56:09 +01:00
}
// apply odd flag
chop := 2 - base[0]&1
return base[chop:]
2014-02-14 23:56:09 +01:00
}
// Keybytes represent a packed encoding of hex sequences
// where 2 nibbles per byte are stored in Data
// + an additional flag for terminating nodes.
type Keybytes struct {
Data []byte
Odd bool
Terminating bool
}
// Nibbles returns the number of nibbles.
func (x *Keybytes) Nibbles() int {
n := len(x.Data) * 2
if x.Odd {
n--
}
return n
}
// ToHex translates from KEYBYTES to HEX encoding.
func (x *Keybytes) ToHex() []byte {
return compactToHex(x.ToCompact())
}
// ToCompact translates from KEYBYTES to COMPACT encoding.
func (x *Keybytes) ToCompact() []byte {
l := len(x.Data)
if !x.Odd {
l++
}
var compact = make([]byte, l)
if x.Terminating {
compact[0] = 0x20
}
if x.Odd {
compact[0] += 0x10
compact[0] += x.Data[0] >> 4
for i := 1; i < len(x.Data); i++ {
compact[i] = (x.Data[i-1] << 4) + (x.Data[i] >> 4)
}
} else {
copy(compact[1:], x.Data)
}
return compact
}
// CompactToKeybytes translates from COMPACT to KEYBYTES encoding.
func CompactToKeybytes(c []byte) Keybytes {
var k Keybytes
k.Odd = (c[0] & 0x10) != 0
k.Terminating = (c[0] & 0x20) != 0
if k.Odd {
k.Data = make([]byte, len(c))
for i := 1; i < len(c); i++ {
k.Data[i-1] = (c[i-1] << 4) + (c[i] >> 4)
}
k.Data[len(c)-1] = c[len(c)-1] << 4
} else {
k.Data = c[1:]
}
return k
}
// EncodeRLP implements rlp.Encoder and encodes Keybytes in the COMPACT encoding.
func (x *Keybytes) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, x.ToCompact())
}
// DecodeRLP implements rlp.Decoder and decodes Keybytes from the COMPACT encoding.
func (x *Keybytes) DecodeRLP(s *rlp.Stream) error {
var compact []byte
if err := s.Decode(&compact); err != nil {
return err
}
*x = CompactToKeybytes(compact)
return nil
}
func keybytesToHex(str []byte) []byte {
l := len(str)*2 + 1
var nibbles = make([]byte, l)
for i, b := range str {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
2014-02-14 23:56:09 +01:00
}
nibbles[l-1] = 16
return nibbles
2014-02-14 23:56:09 +01:00
}
2014-05-27 01:08:51 +02:00
// hexToKeybytes turns hex nibbles into key bytes.
// This can only be used for keys of even length.
func hexToKeybytes(hex []byte) []byte {
if hasTerm(hex) {
hex = hex[:len(hex)-1]
}
if len(hex)&1 != 0 {
panic("can't convert hex key of odd length")
}
key := make([]byte, len(hex)/2)
decodeNibbles(hex, key)
return key
}
func decodeNibbles(nibbles []byte, bytes []byte) {
if hasTerm(nibbles) {
nibbles = nibbles[:len(nibbles)-1]
}
nl := len(nibbles)
for bi, ni := 0, 0; ni < nl; bi, ni = bi+1, ni+2 {
if ni == nl-1 {
bytes[bi] = (bytes[bi] &^ 0xf0) | nibbles[ni]<<4
} else {
bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
}
2014-05-27 01:08:51 +02:00
}
}
2015-07-06 01:19:48 +02:00
// prefixLen returns the length of the common prefix of a and b.
func prefixLen(a, b []byte) int {
var i, length = 0, len(a)
if len(b) < length {
length = len(b)
}
for ; i < length; i++ {
if a[i] != b[i] {
break
}
}
return i
}
// hasTerm returns whether a hex key has the terminator flag.
2015-07-06 01:19:48 +02:00
func hasTerm(s []byte) bool {
return len(s) > 0 && s[len(s)-1] == 16
2015-07-06 01:19:48 +02:00
}