erigon-pulse/core/block_validator.go

179 lines
5.9 KiB
Go
Raw Normal View History

2016-04-14 16:18:24 +00:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"context"
"errors"
"fmt"
"strings"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/consensus"
"github.com/ledgerwatch/turbo-geth/core/state"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/params"
)
// BlockValidator is responsible for validating block headers, uncles and
// processed state.
//
// BlockValidator implements Validator.
type BlockValidator struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus.Engine // Consensus engine used for validating
}
// NewBlockValidator returns a new block validator which is safe for re-use
func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus.Engine) *BlockValidator {
validator := &BlockValidator{
config: config,
engine: engine,
bc: blockchain,
}
return validator
}
// ValidateBody validates the given block's uncles and verifies the block
// header's transaction and uncle roots. The headers are assumed to be already
// validated at this point.
func (v *BlockValidator) ValidateBody(ctx context.Context, block *types.Block) error {
// Check whether the block's known, and if not, that it's linkable
//if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) {
// return ErrKnownBlock
//}
// Check whether the block is linkable
_, noHistory := params.GetNoHistoryByBlock(ctx, block.Number())
if !noHistory && v.bc.GetBlockByHash(block.ParentHash()) == nil {
return consensus.ErrUnknownAncestor
}
if err := v.engine.VerifyUncles(v.bc, block); err != nil {
return err
}
if noHistory {
2020-08-29 11:43:44 +00:00
return nil
}
2020-08-29 11:43:44 +00:00
if hash := types.DeriveSha(block.Transactions()); hash != block.Header().TxHash {
return nil
}
if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) {
if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) {
return consensus.ErrUnknownAncestor
}
return consensus.ErrPrunedAncestor
}
return nil
}
// ValidateReceipts validates block receipts.
func (v *BlockValidator) ValidateReceipts(block *types.Block, receipts types.Receipts) error {
header := block.Header()
var errorBuf strings.Builder
// Validate the received block's bloom with the one derived from the generated receipts.
// For valid blocks this should always validate to true.
rbloom := types.CreateBloom(receipts)
if rbloom != header.Bloom {
if errorBuf.Len() > 0 {
errorBuf.WriteString("; ")
}
fmt.Fprintf(&errorBuf, "invalid bloom (remote: %x local: %x)", header.Bloom, rbloom)
}
// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, Rn]]))
if v.config.IsByzantium(block.Header().Number) {
receiptSha := types.DeriveSha(receipts)
if receiptSha != header.ReceiptHash {
if errorBuf.Len() > 0 {
errorBuf.WriteString("; ")
}
for _, r := range receipts {
for _, l := range r.Logs {
fmt.Printf("receipts: %s %x\n", l.Data, l.Data)
}
}
fmt.Fprintf(&errorBuf, "invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha)
}
}
if errorBuf.Len() > 0 {
return errors.New(errorBuf.String())
}
return nil
}
// ValidateGasAndRoot validates the amount of used gas and the state root.
func (v *BlockValidator) ValidateGasAndRoot(block *types.Block, root common.Hash, usedGas uint64, tds *state.TrieDbState) error {
var errorBuf strings.Builder
if block.GasUsed() != usedGas {
fmt.Fprintf(&errorBuf, "invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas)
}
// Validate the state root against the received state root and throw
// an error if they don't match.
if block.Header().Root != root {
if errorBuf.Len() > 0 {
errorBuf.WriteString("; ")
}
fmt.Fprintf(&errorBuf, "[pre-processed] invalid merkle root (remote: %x local: %x)", block.Header().Root, root)
}
if errorBuf.Len() > 0 {
return errors.New(errorBuf.String())
}
return nil
}
// CalcGasLimit computes the gas limit of the next block after parent. It aims
// to keep the baseline gas above the provided floor, and increase it towards the
// ceil if the blocks are full. If the ceil is exceeded, it will always decrease
// the gas allowance.
func CalcGasLimit(parent *types.Block, gasFloor, gasCeil uint64) uint64 {
// contrib = (parentGasUsed * 3 / 2) / 1024
contrib := (parent.GasUsed() + parent.GasUsed()/2) / params.GasLimitBoundDivisor
// decay = parentGasLimit / 1024 -1
decay := parent.GasLimit()/params.GasLimitBoundDivisor - 1
/*
strategy: gasLimit of block-to-mine is set based on parent's
gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we
increase it, otherwise lower it (or leave it unchanged if it's right
at that usage) the amount increased/decreased depends on how far away
from parentGasLimit * (2/3) parentGasUsed is.
*/
limit := parent.GasLimit() - decay + contrib
if limit < params.MinGasLimit {
limit = params.MinGasLimit
}
// If we're outside our allowed gas range, we try to hone towards them
if limit < gasFloor {
limit = parent.GasLimit() + decay
if limit > gasFloor {
limit = gasFloor
}
} else if limit > gasCeil {
limit = parent.GasLimit() - decay
if limit < gasCeil {
limit = gasCeil
}
}
return limit
}