erigon-pulse/cmd/devnet/contracts/lib/merklepatriciaproof.sol

137 lines
4.7 KiB
Solidity
Raw Normal View History

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {RLPReader} from "./RLPReader.sol";
library MerklePatriciaProof {
/*
* @dev Verifies a merkle patricia proof.
* @param value The terminating value in the trie.
* @param encodedPath The path in the trie leading to value.
* @param rlpParentNodes The rlp encoded stack of nodes.
* @param root The root hash of the trie.
* @return The boolean validity of the proof.
*/
function verify(
bytes memory value,
bytes memory encodedPath,
bytes memory rlpParentNodes,
bytes32 root
) internal pure returns (bool verified) {
RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);
bytes memory currentNode;
RLPReader.RLPItem[] memory currentNodeList;
bytes32 nodeKey = root;
uint256 pathPtr = 0;
bytes memory path = _getNibbleArray(encodedPath);
if (path.length == 0) {
return false;
}
for (uint256 i = 0; i < parentNodes.length; i++) {
if (pathPtr > path.length) {
return false;
}
currentNode = RLPReader.toRlpBytes(parentNodes[i]);
if (nodeKey != keccak256(currentNode)) {
return false;
}
currentNodeList = RLPReader.toList(parentNodes[i]);
if (currentNodeList.length == 17) {
if (pathPtr == path.length) {
if (keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value)) {
return true;
} else {
return false;
}
}
uint8 nextPathNibble = uint8(path[pathPtr]);
if (nextPathNibble > 16) {
return false;
}
nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[nextPathNibble]));
pathPtr += 1;
} else if (currentNodeList.length == 2) {
uint256 traversed = _nibblesToTraverse(RLPReader.toBytes(currentNodeList[0]), path, pathPtr);
if (pathPtr + traversed == path.length) {
//leaf node
if (keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value)) {
return true;
} else {
return false;
}
}
//extension node
if (traversed == 0) {
return false;
}
pathPtr += traversed;
nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
} else {
return false;
}
}
}
function _nibblesToTraverse(
bytes memory encodedPartialPath,
bytes memory path,
uint256 pathPtr
) private pure returns (uint256) {
uint256 len = 0;
// encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath
// and slicedPath have elements that are each one hex character (1 nibble)
bytes memory partialPath = _getNibbleArray(encodedPartialPath);
bytes memory slicedPath = new bytes(partialPath.length);
// pathPtr counts nibbles in path
// partialPath.length is a number of nibbles
for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
bytes1 pathNibble = path[i];
slicedPath[i - pathPtr] = pathNibble;
}
if (keccak256(partialPath) == keccak256(slicedPath)) {
len = partialPath.length;
} else {
len = 0;
}
return len;
}
// bytes b must be hp encoded
function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) {
bytes memory nibbles = "";
if (b.length > 0) {
uint8 offset;
uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
if (hpNibble == 1 || hpNibble == 3) {
nibbles = new bytes(b.length * 2 - 1);
bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
nibbles[0] = oddNibble;
offset = 1;
} else {
nibbles = new bytes(b.length * 2 - 2);
offset = 0;
}
for (uint256 i = offset; i < nibbles.length; i++) {
nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
}
}
return nibbles;
}
function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) {
return bytes1(n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10);
}
}