erigon-pulse/p2p/peer.go

528 lines
14 KiB
Go
Raw Normal View History

2015-07-07 00:54:22 +00:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 00:54:22 +00:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 00:54:22 +00:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 00:54:22 +00:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 00:54:22 +00:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 00:54:22 +00:00
2014-10-23 15:57:54 +00:00
package p2p
import (
2018-06-20 12:06:27 +00:00
"errors"
2014-10-23 15:57:54 +00:00
"fmt"
"io"
2014-10-23 15:57:54 +00:00
"net"
"sort"
"sync"
"time"
metrics2 "github.com/VictoriaMetrics/metrics"
2022-11-20 03:41:30 +00:00
"github.com/ledgerwatch/erigon-lib/common/metrics"
"github.com/ledgerwatch/erigon/common/debug"
"github.com/ledgerwatch/erigon/common/mclock"
"github.com/ledgerwatch/erigon/event"
"github.com/ledgerwatch/erigon/p2p/enode"
"github.com/ledgerwatch/erigon/p2p/enr"
"github.com/ledgerwatch/erigon/rlp"
2021-07-29 10:23:23 +00:00
"github.com/ledgerwatch/log/v3"
2014-10-23 15:57:54 +00:00
)
2018-06-20 12:06:27 +00:00
var (
ErrShuttingDown = errors.New("shutting down")
)
const (
baseProtocolVersion = 5
baseProtocolLength = uint64(16)
baseProtocolMaxMsgSize = 2 * 1024
snappyProtocolVersion = 5
pingInterval = 15 * time.Second
)
const (
// devp2p message codes
handshakeMsg = 0x00
discMsg = 0x01
pingMsg = 0x02
pongMsg = 0x03
)
// protoHandshake is the RLP structure of the protocol handshake.
type protoHandshake struct {
Version uint64
Name string
Caps []Cap
ListenPort uint64
Pubkey []byte // secp256k1 public key
2015-12-23 00:48:55 +00:00
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// PeerEventType is the type of peer events emitted by a p2p.Server
type PeerEventType string
const (
// PeerEventTypeAdd is the type of event emitted when a peer is added
// to a p2p.Server
PeerEventTypeAdd PeerEventType = "add"
// PeerEventTypeDrop is the type of event emitted when a peer is
// dropped from a p2p.Server
PeerEventTypeDrop PeerEventType = "drop"
// PeerEventTypeMsgSend is the type of event emitted when a
// message is successfully sent to a peer
PeerEventTypeMsgSend PeerEventType = "msgsend"
// PeerEventTypeMsgRecv is the type of event emitted when a
// message is received from a peer
PeerEventTypeMsgRecv PeerEventType = "msgrecv"
)
// PeerEvent is an event emitted when peers are either added or dropped from
// a p2p.Server or when a message is sent or received on a peer connection
type PeerEvent struct {
Type PeerEventType `json:"type"`
Peer enode.ID `json:"peer"`
Error string `json:"error,omitempty"`
Protocol string `json:"protocol,omitempty"`
MsgCode *uint64 `json:"msg_code,omitempty"`
MsgSize *uint32 `json:"msg_size,omitempty"`
LocalAddress string `json:"local,omitempty"`
RemoteAddress string `json:"remote,omitempty"`
}
// Peer represents a connected remote node.
2014-10-23 15:57:54 +00:00
type Peer struct {
rw *conn
running map[string]*protoRW
log log.Logger
created mclock.AbsTime
wg sync.WaitGroup
protoErr chan error
closed chan struct{}
disc chan DiscReason
// events receives message send / receive events if set
events *event.Feed
pubkey [64]byte
}
// NewPeer returns a peer for testing purposes.
func NewPeer(id enode.ID, pubkey [64]byte, name string, caps []Cap) *Peer {
pipe, _ := net.Pipe()
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-24 22:59:00 +00:00
node := enode.SignNull(new(enr.Record), id)
conn := &conn{fd: pipe, transport: nil, node: node, caps: caps, name: name}
peer := newPeer(log.Root(), conn, nil, pubkey)
close(peer.closed) // ensures Disconnect doesn't block
2014-10-23 15:57:54 +00:00
return peer
}
// ID returns the node's unique identifier.
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-24 22:59:00 +00:00
func (p *Peer) ID() enode.ID {
return p.rw.node.ID()
}
func (p *Peer) Pubkey() [64]byte {
return p.pubkey
}
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-24 22:59:00 +00:00
// Node returns the peer's node descriptor.
func (p *Peer) Node() *enode.Node {
return p.rw.node
}
// Name returns an abbreviated form of the name
func (p *Peer) Name() string {
s := p.rw.name
if len(s) > 20 {
return s[:20] + "..."
}
return s
}
// Fullname returns the node name that the remote node advertised.
func (p *Peer) Fullname() string {
return p.rw.name
}
// Caps returns the capabilities (supported subprotocols) of the remote peer.
func (p *Peer) Caps() []Cap {
// TODO: maybe return copy
return p.rw.caps
}
// RunningCap returns true if the peer is actively connected using any of the
// enumerated versions of a specific protocol, meaning that at least one of the
// versions is supported by both this node and the peer p.
func (p *Peer) RunningCap(protocol string, versions []uint) bool {
if proto, ok := p.running[protocol]; ok {
for _, ver := range versions {
if proto.Version == ver {
return true
}
}
}
return false
}
// RemoteAddr returns the remote address of the network connection.
func (p *Peer) RemoteAddr() net.Addr {
return p.rw.fd.RemoteAddr()
}
// LocalAddr returns the local address of the network connection.
func (p *Peer) LocalAddr() net.Addr {
return p.rw.fd.LocalAddr()
}
// Disconnect terminates the peer connection with the given reason.
// It returns immediately and does not wait until the connection is closed.
func (p *Peer) Disconnect(reason DiscReason) {
select {
case p.disc <- reason:
case <-p.closed:
}
}
// String implements fmt.Stringer.
func (p *Peer) String() string {
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
2018-09-24 22:59:00 +00:00
id := p.ID()
return fmt.Sprintf("Peer %x %v", id[:8], p.RemoteAddr())
}
// Inbound returns true if the peer is an inbound connection
func (p *Peer) Inbound() bool {
return p.rw.is(inboundConn)
}
func newPeer(logger log.Logger, conn *conn, protocols []Protocol, pubkey [64]byte) *Peer {
protomap := matchProtocols(protocols, conn.caps, conn)
p := &Peer{
rw: conn,
running: protomap,
created: mclock.Now(),
disc: make(chan DiscReason),
protoErr: make(chan error, len(protomap)+1), // protocols + pingLoop
closed: make(chan struct{}),
log: logger.New("id", conn.node.ID(), "conn", conn.flags),
pubkey: pubkey,
2014-10-23 15:57:54 +00:00
}
return p
}
func (p *Peer) Log() log.Logger {
return p.log
}
func (p *Peer) run() (remoteRequested bool, err error) {
var (
writeStart = make(chan struct{}, 1)
writeErr = make(chan error, 1)
readErr = make(chan error, 1)
reason DiscReason // sent to the peer
)
p.wg.Add(2)
go p.readLoop(readErr)
go p.pingLoop()
// Start all protocol handlers.
writeStart <- struct{}{}
p.startProtocols(writeStart, writeErr)
// Wait for an error or disconnect.
loop:
for {
select {
case err = <-writeErr:
// A write finished. Allow the next write to start if
// there was no error.
if err != nil {
reason = DiscNetworkError
break loop
}
writeStart <- struct{}{}
case err = <-readErr:
if r, ok := err.(DiscReason); ok {
remoteRequested = true
reason = r
} else {
reason = DiscNetworkError
}
break loop
case err = <-p.protoErr:
reason = discReasonForError(err)
break loop
case err = <-p.disc:
reason = discReasonForError(err)
break loop
}
}
close(p.closed)
p.rw.close(reason)
p.wg.Wait()
return remoteRequested, err
}
func (p *Peer) pingLoop() {
2021-06-22 10:09:45 +00:00
defer debug.LogPanic()
ping := time.NewTimer(pingInterval)
defer p.wg.Done()
defer ping.Stop()
for {
select {
case <-ping.C:
if err := SendItems(p.rw, pingMsg); err != nil {
p.protoErr <- err
return
}
ping.Reset(pingInterval)
case <-p.closed:
return
}
}
}
func (p *Peer) readLoop(errc chan<- error) {
2021-06-22 10:09:45 +00:00
defer debug.LogPanic()
defer p.wg.Done()
for {
msg, err := p.rw.ReadMsg()
if err != nil {
errc <- err
return
}
msg.ReceivedAt = time.Now()
if err = p.handle(msg); err != nil {
errc <- err
return
}
}
}
func (p *Peer) handle(msg Msg) error {
switch {
case msg.Code == pingMsg:
msg.Discard()
go SendItems(p.rw, pongMsg)
case msg.Code == discMsg:
// This is the last message. We don't need to discard or
// check errors because, the connection will be closed after it.
var m struct{ R DiscReason }
rlp.Decode(msg.Payload, &m)
return m.R
case msg.Code < baseProtocolLength:
// ignore other base protocol messages
msg.Discard()
return nil
default:
// it's a subprotocol message
proto, err := p.getProto(msg.Code)
if err != nil {
return fmt.Errorf("msg code out of range: %v", msg.Code)
}
if metrics.Enabled {
m := fmt.Sprintf("%s_%s_%d_%#02x", ingressMeterName, proto.Name, proto.Version, msg.Code-proto.offset)
metrics2.GetOrCreateCounter(m).Set(uint64(msg.meterSize))
metrics2.GetOrCreateCounter(m + "_packets").Set(1)
}
select {
case proto.in <- msg:
return nil
case <-p.closed:
return io.EOF
}
}
return nil
}
func countMatchingProtocols(protocols []Protocol, caps []Cap) int {
n := 0
for _, cap := range caps {
for _, proto := range protocols {
if proto.Name == cap.Name && proto.Version == cap.Version {
n++
}
}
}
return n
}
// matchProtocols creates structures for matching named subprotocols.
func matchProtocols(protocols []Protocol, caps []Cap, rw MsgReadWriter) map[string]*protoRW {
sort.Sort(capsByNameAndVersion(caps))
offset := baseProtocolLength
result := make(map[string]*protoRW)
outer:
for _, cap := range caps {
for _, proto := range protocols {
if proto.Name == cap.Name && proto.Version == cap.Version {
// If an old protocol version matched, revert it
if old := result[cap.Name]; old != nil {
offset -= old.Length
}
// Assign the new match
result[cap.Name] = &protoRW{Protocol: proto, offset: offset, in: make(chan Msg), w: rw}
offset += proto.Length
continue outer
}
}
}
return result
}
func (p *Peer) startProtocols(writeStart <-chan struct{}, writeErr chan<- error) {
p.wg.Add(len(p.running))
for _, proto := range p.running {
proto := proto
proto.closed = p.closed
proto.wstart = writeStart
proto.werr = writeErr
var rw MsgReadWriter = proto
if p.events != nil {
rw = newMsgEventer(rw, p.events, p.ID(), proto.Name, p.Info().Network.RemoteAddress, p.Info().Network.LocalAddress)
}
p.log.Trace(fmt.Sprintf("Starting protocol %s/%d", proto.Name, proto.Version))
go func() {
2021-06-22 10:09:45 +00:00
defer debug.LogPanic()
defer p.wg.Done()
err := proto.Run(p, rw)
if err == nil {
p.log.Trace(fmt.Sprintf("Protocol %s/%d returned", proto.Name, proto.Version))
err = errProtocolReturned
} else if err != io.EOF {
p.log.Trace(fmt.Sprintf("Protocol %s/%d failed", proto.Name, proto.Version), "err", err)
}
p.protoErr <- err
}()
}
}
// getProto finds the protocol responsible for handling
// the given message code.
func (p *Peer) getProto(code uint64) (*protoRW, error) {
for _, proto := range p.running {
if code >= proto.offset && code < proto.offset+proto.Length {
return proto, nil
}
}
return nil, newPeerError(errInvalidMsgCode, "%d", code)
}
type protoRW struct {
Protocol
2018-07-18 07:41:18 +00:00
in chan Msg // receives read messages
closed <-chan struct{} // receives when peer is shutting down
wstart <-chan struct{} // receives when write may start
werr chan<- error // for write results
offset uint64
w MsgWriter
}
func (rw *protoRW) WriteMsg(msg Msg) (err error) {
if msg.Code >= rw.Length {
return newPeerError(errInvalidMsgCode, "not handled")
}
msg.meterCap = rw.cap()
msg.meterCode = msg.Code
msg.Code += rw.offset
select {
case <-rw.wstart:
err = rw.w.WriteMsg(msg)
// Report write status back to Peer.run. It will initiate
// shutdown if the error is non-nil and unblock the next write
// otherwise. The calling protocol code should exit for errors
// as well but we don't want to rely on that.
rw.werr <- err
case <-rw.closed:
2018-06-20 12:06:27 +00:00
err = ErrShuttingDown
}
return err
2014-10-23 15:57:54 +00:00
}
func (rw *protoRW) ReadMsg() (Msg, error) {
select {
case msg := <-rw.in:
msg.Code -= rw.offset
return msg, nil
case <-rw.closed:
return Msg{}, io.EOF
}
2014-10-23 15:57:54 +00:00
}
// PeerInfo represents a short summary of the information known about a connected
// peer. Sub-protocol independent fields are contained and initialized here, with
// protocol specifics delegated to all connected sub-protocols.
type PeerInfo struct {
2019-07-19 09:25:43 +00:00
ENR string `json:"enr,omitempty"` // Ethereum Node Record
Enode string `json:"enode"` // Node URL
ID string `json:"id"` // Unique node identifier
Name string `json:"name"` // Name of the node, including client type, version, OS, custom data
Caps []string `json:"caps"` // Protocols advertised by this peer
Network struct {
LocalAddress string `json:"localAddress"` // Local endpoint of the TCP data connection
RemoteAddress string `json:"remoteAddress"` // Remote endpoint of the TCP data connection
Inbound bool `json:"inbound"`
Trusted bool `json:"trusted"`
Static bool `json:"static"`
} `json:"network"`
Protocols map[string]interface{} `json:"protocols"` // Sub-protocol specific metadata fields
}
// Info gathers and returns a collection of metadata known about a peer.
func (p *Peer) Info() *PeerInfo {
// Gather the protocol capabilities
caps := make([]string, 0, len(p.Caps()))
for _, cap := range p.Caps() {
caps = append(caps, cap.String())
}
// Assemble the generic peer metadata
info := &PeerInfo{
2019-07-19 09:25:43 +00:00
Enode: p.Node().URLv4(),
ID: p.ID().String(),
Name: p.Fullname(),
Caps: caps,
Protocols: make(map[string]interface{}),
}
2019-07-19 09:25:43 +00:00
if p.Node().Seq() > 0 {
info.ENR = p.Node().String()
}
info.Network.LocalAddress = p.LocalAddr().String()
info.Network.RemoteAddress = p.RemoteAddr().String()
info.Network.Inbound = p.rw.is(inboundConn)
info.Network.Trusted = p.rw.is(trustedConn)
info.Network.Static = p.rw.is(staticDialedConn)
// Gather all the running protocol infos
for _, proto := range p.running {
protoInfo := interface{}("unknown")
if query := proto.Protocol.PeerInfo; query != nil {
if metadata := query(p.Pubkey()); metadata != nil {
protoInfo = metadata
} else {
protoInfo = "handshake"
}
}
info.Protocols[proto.Name] = protoInfo
}
return info
}