mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2024-12-24 20:47:16 +00:00
Merge pull request #16722 from karalabe/trie-iterator-proofs
trie: support proof generation from the iterator
This commit is contained in:
commit
56de337e57
@ -22,6 +22,7 @@ import (
|
||||
"errors"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
)
|
||||
|
||||
// Iterator is a key-value trie iterator that traverses a Trie.
|
||||
@ -55,31 +56,50 @@ func (it *Iterator) Next() bool {
|
||||
return false
|
||||
}
|
||||
|
||||
// Prove generates the Merkle proof for the leaf node the iterator is currently
|
||||
// positioned on.
|
||||
func (it *Iterator) Prove() [][]byte {
|
||||
return it.nodeIt.LeafProof()
|
||||
}
|
||||
|
||||
// NodeIterator is an iterator to traverse the trie pre-order.
|
||||
type NodeIterator interface {
|
||||
// Next moves the iterator to the next node. If the parameter is false, any child
|
||||
// nodes will be skipped.
|
||||
Next(bool) bool
|
||||
|
||||
// Error returns the error status of the iterator.
|
||||
Error() error
|
||||
|
||||
// Hash returns the hash of the current node.
|
||||
Hash() common.Hash
|
||||
|
||||
// Parent returns the hash of the parent of the current node. The hash may be the one
|
||||
// grandparent if the immediate parent is an internal node with no hash.
|
||||
Parent() common.Hash
|
||||
|
||||
// Path returns the hex-encoded path to the current node.
|
||||
// Callers must not retain references to the return value after calling Next.
|
||||
// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
|
||||
Path() []byte
|
||||
|
||||
// Leaf returns true iff the current node is a leaf node.
|
||||
// LeafBlob, LeafKey return the contents and key of the leaf node. These
|
||||
// method panic if the iterator is not positioned at a leaf.
|
||||
// Callers must not retain references to their return value after calling Next
|
||||
Leaf() bool
|
||||
LeafBlob() []byte
|
||||
|
||||
// LeafKey returns the key of the leaf. The method panics if the iterator is not
|
||||
// positioned at a leaf. Callers must not retain references to the value after
|
||||
// calling Next.
|
||||
LeafKey() []byte
|
||||
|
||||
// LeafBlob returns the content of the leaf. The method panics if the iterator
|
||||
// is not positioned at a leaf. Callers must not retain references to the value
|
||||
// after calling Next.
|
||||
LeafBlob() []byte
|
||||
|
||||
// LeafProof returns the Merkle proof of the leaf. The method panics if the
|
||||
// iterator is not positioned at a leaf. Callers must not retain references
|
||||
// to the value after calling Next.
|
||||
LeafProof() [][]byte
|
||||
}
|
||||
|
||||
// nodeIteratorState represents the iteration state at one particular node of the
|
||||
@ -139,6 +159,15 @@ func (it *nodeIterator) Leaf() bool {
|
||||
return hasTerm(it.path)
|
||||
}
|
||||
|
||||
func (it *nodeIterator) LeafKey() []byte {
|
||||
if len(it.stack) > 0 {
|
||||
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||
return hexToKeybytes(it.path)
|
||||
}
|
||||
}
|
||||
panic("not at leaf")
|
||||
}
|
||||
|
||||
func (it *nodeIterator) LeafBlob() []byte {
|
||||
if len(it.stack) > 0 {
|
||||
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||
@ -148,10 +177,22 @@ func (it *nodeIterator) LeafBlob() []byte {
|
||||
panic("not at leaf")
|
||||
}
|
||||
|
||||
func (it *nodeIterator) LeafKey() []byte {
|
||||
func (it *nodeIterator) LeafProof() [][]byte {
|
||||
if len(it.stack) > 0 {
|
||||
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||
return hexToKeybytes(it.path)
|
||||
hasher := newHasher(0, 0, nil)
|
||||
proofs := make([][]byte, 0, len(it.stack))
|
||||
|
||||
for i, item := range it.stack[:len(it.stack)-1] {
|
||||
// Gather nodes that end up as hash nodes (or the root)
|
||||
node, _, _ := hasher.hashChildren(item.node, nil)
|
||||
hashed, _ := hasher.store(node, nil, false)
|
||||
if _, ok := hashed.(hashNode); ok || i == 0 {
|
||||
enc, _ := rlp.EncodeToBytes(node)
|
||||
proofs = append(proofs, enc)
|
||||
}
|
||||
}
|
||||
return proofs
|
||||
}
|
||||
}
|
||||
panic("not at leaf")
|
||||
@ -361,12 +402,16 @@ func (it *differenceIterator) Leaf() bool {
|
||||
return it.b.Leaf()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) LeafKey() []byte {
|
||||
return it.b.LeafKey()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) LeafBlob() []byte {
|
||||
return it.b.LeafBlob()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) LeafKey() []byte {
|
||||
return it.b.LeafKey()
|
||||
func (it *differenceIterator) LeafProof() [][]byte {
|
||||
return it.b.LeafProof()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Path() []byte {
|
||||
@ -464,12 +509,16 @@ func (it *unionIterator) Leaf() bool {
|
||||
return (*it.items)[0].Leaf()
|
||||
}
|
||||
|
||||
func (it *unionIterator) LeafKey() []byte {
|
||||
return (*it.items)[0].LeafKey()
|
||||
}
|
||||
|
||||
func (it *unionIterator) LeafBlob() []byte {
|
||||
return (*it.items)[0].LeafBlob()
|
||||
}
|
||||
|
||||
func (it *unionIterator) LeafKey() []byte {
|
||||
return (*it.items)[0].LeafKey()
|
||||
func (it *unionIterator) LeafProof() [][]byte {
|
||||
return (*it.items)[0].LeafProof()
|
||||
}
|
||||
|
||||
func (it *unionIterator) Path() []byte {
|
||||
@ -509,12 +558,10 @@ func (it *unionIterator) Next(descend bool) bool {
|
||||
heap.Push(it.items, skipped)
|
||||
}
|
||||
}
|
||||
|
||||
if least.Next(descend) {
|
||||
it.count++
|
||||
heap.Push(it.items, least)
|
||||
}
|
||||
|
||||
return len(*it.items) > 0
|
||||
}
|
||||
|
||||
|
@ -32,20 +32,46 @@ func init() {
|
||||
mrand.Seed(time.Now().Unix())
|
||||
}
|
||||
|
||||
// makeProvers creates Merkle trie provers based on different implementations to
|
||||
// test all variations.
|
||||
func makeProvers(trie *Trie) []func(key []byte) *ethdb.MemDatabase {
|
||||
var provers []func(key []byte) *ethdb.MemDatabase
|
||||
|
||||
// Create a direct trie based Merkle prover
|
||||
provers = append(provers, func(key []byte) *ethdb.MemDatabase {
|
||||
proof := ethdb.NewMemDatabase()
|
||||
trie.Prove(key, 0, proof)
|
||||
return proof
|
||||
})
|
||||
// Create a leaf iterator based Merkle prover
|
||||
provers = append(provers, func(key []byte) *ethdb.MemDatabase {
|
||||
proof := ethdb.NewMemDatabase()
|
||||
if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
|
||||
for _, p := range it.Prove() {
|
||||
proof.Put(crypto.Keccak256(p), p)
|
||||
}
|
||||
}
|
||||
return proof
|
||||
})
|
||||
return provers
|
||||
}
|
||||
|
||||
func TestProof(t *testing.T) {
|
||||
trie, vals := randomTrie(500)
|
||||
root := trie.Hash()
|
||||
for _, kv := range vals {
|
||||
proofs := ethdb.NewMemDatabase()
|
||||
if trie.Prove(kv.k, 0, proofs) != nil {
|
||||
t.Fatalf("missing key %x while constructing proof", kv.k)
|
||||
}
|
||||
val, _, err := VerifyProof(root, kv.k, proofs)
|
||||
if err != nil {
|
||||
t.Fatalf("VerifyProof error for key %x: %v\nraw proof: %v", kv.k, err, proofs)
|
||||
}
|
||||
if !bytes.Equal(val, kv.v) {
|
||||
t.Fatalf("VerifyProof returned wrong value for key %x: got %x, want %x", kv.k, val, kv.v)
|
||||
for i, prover := range makeProvers(trie) {
|
||||
for _, kv := range vals {
|
||||
proof := prover(kv.k)
|
||||
if proof == nil {
|
||||
t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
|
||||
}
|
||||
val, _, err := VerifyProof(root, kv.k, proof)
|
||||
if err != nil {
|
||||
t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
|
||||
}
|
||||
if !bytes.Equal(val, kv.v) {
|
||||
t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -53,37 +79,66 @@ func TestProof(t *testing.T) {
|
||||
func TestOneElementProof(t *testing.T) {
|
||||
trie := new(Trie)
|
||||
updateString(trie, "k", "v")
|
||||
proofs := ethdb.NewMemDatabase()
|
||||
trie.Prove([]byte("k"), 0, proofs)
|
||||
if len(proofs.Keys()) != 1 {
|
||||
t.Error("proof should have one element")
|
||||
}
|
||||
val, _, err := VerifyProof(trie.Hash(), []byte("k"), proofs)
|
||||
if err != nil {
|
||||
t.Fatalf("VerifyProof error: %v\nproof hashes: %v", err, proofs.Keys())
|
||||
}
|
||||
if !bytes.Equal(val, []byte("v")) {
|
||||
t.Fatalf("VerifyProof returned wrong value: got %x, want 'k'", val)
|
||||
for i, prover := range makeProvers(trie) {
|
||||
proof := prover([]byte("k"))
|
||||
if proof == nil {
|
||||
t.Fatalf("prover %d: nil proof", i)
|
||||
}
|
||||
if proof.Len() != 1 {
|
||||
t.Errorf("prover %d: proof should have one element", i)
|
||||
}
|
||||
val, _, err := VerifyProof(trie.Hash(), []byte("k"), proof)
|
||||
if err != nil {
|
||||
t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
||||
}
|
||||
if !bytes.Equal(val, []byte("v")) {
|
||||
t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestVerifyBadProof(t *testing.T) {
|
||||
func TestBadProof(t *testing.T) {
|
||||
trie, vals := randomTrie(800)
|
||||
root := trie.Hash()
|
||||
for _, kv := range vals {
|
||||
proofs := ethdb.NewMemDatabase()
|
||||
trie.Prove(kv.k, 0, proofs)
|
||||
if len(proofs.Keys()) == 0 {
|
||||
t.Fatal("zero length proof")
|
||||
for i, prover := range makeProvers(trie) {
|
||||
for _, kv := range vals {
|
||||
proof := prover(kv.k)
|
||||
if proof == nil {
|
||||
t.Fatalf("prover %d: nil proof", i)
|
||||
}
|
||||
key := proof.Keys()[mrand.Intn(proof.Len())]
|
||||
val, _ := proof.Get(key)
|
||||
proof.Delete(key)
|
||||
|
||||
mutateByte(val)
|
||||
proof.Put(crypto.Keccak256(val), val)
|
||||
|
||||
if _, _, err := VerifyProof(root, kv.k, proof); err == nil {
|
||||
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
|
||||
}
|
||||
}
|
||||
keys := proofs.Keys()
|
||||
key := keys[mrand.Intn(len(keys))]
|
||||
node, _ := proofs.Get(key)
|
||||
proofs.Delete(key)
|
||||
mutateByte(node)
|
||||
proofs.Put(crypto.Keccak256(node), node)
|
||||
if _, _, err := VerifyProof(root, kv.k, proofs); err == nil {
|
||||
t.Fatalf("expected proof to fail for key %x", kv.k)
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that missing keys can also be proven. The test explicitly uses a single
|
||||
// entry trie and checks for missing keys both before and after the single entry.
|
||||
func TestMissingKeyProof(t *testing.T) {
|
||||
trie := new(Trie)
|
||||
updateString(trie, "k", "v")
|
||||
|
||||
for i, key := range []string{"a", "j", "l", "z"} {
|
||||
proof := ethdb.NewMemDatabase()
|
||||
trie.Prove([]byte(key), 0, proof)
|
||||
|
||||
if proof.Len() != 1 {
|
||||
t.Errorf("test %d: proof should have one element", i)
|
||||
}
|
||||
val, _, err := VerifyProof(trie.Hash(), []byte(key), proof)
|
||||
if err != nil {
|
||||
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
||||
}
|
||||
if val != nil {
|
||||
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user