* all: seperate consensus error and evm internal error
There are actually two types of error will be returned when
a tranaction/message call is executed: (a) consensus error
(b) evm internal error. The former should be converted to
a consensus issue, e.g. The sender doesn't enough asset to
purchase the gas it specifies. The latter is allowed since
evm itself is a blackbox and internal error is allowed to happen.
This PR emphasizes the difference by introducing a executionResult
structure. The evm error is embedded inside. So if any error
returned, it indicates consensus issue happens.
And also this PR improve the `EstimateGas` API to return the concrete
revert reason if the transaction always fails
* all: polish
* accounts/abi/bind/backends: add tests
* accounts/abi/bind/backends, internal: cleanup error message
* all: address comments
* core: fix lint
* accounts, core, eth, internal: address comments
* accounts, internal: resolve revert reason if possible
* accounts, internal: address comments
# Conflicts:
# accounts/abi/abi.go
# accounts/abi/bind/backends/simulated.go
# cmd/geth/retesteth.go
# core/state/snapshot/difflayer_test.go
# core/state/snapshot/disklayer_test.go
# core/state/snapshot/iterator_test.go
# core/state_processor.go
# core/state_transition.go
# core/vm/evm.go
# core/vm/instructions.go
# core/vm/jump_table.go
# eth/api_tracer.go
# internal/ethapi/api.go
# les/odr_test.go
# light/odr_test.go
# tests/state_test_util.go
* core/vm: improve jumpdest lookup
* Use uint256 in EVM implementation (kudos to Pawel Bylica)
* Safety precaution in opMulmod
Co-authored-by: Martin Holst Swende <martin@swende.se>
* params, core/vm: deprecating gastable, part 1
* core/vm, params: deprecate gastable, use both constant and dynamic gas
* core/vm, params: remove gastable, remove copypaste
* core/vm: make use of the chainrules
* interpreter: make tracing count constant+dynamic gas
* core/vm: review concerns (param/method name changes)
* core/vm: make use of chainrules more
* core/vm: remove function call for stack validation from evm runloop
* core/vm: separate gas calc into static + dynamic
* core/vm: optimize push1
* core/vm: reuse pooled bigints for ADDRESS, ORIGIN and CALLER
* core/vm: use generic error message for jump/jumpi, to avoid string interpolation
* testdata: fix tests for new error message
* core/vm: use 64-bit memory calculations
* core/vm: fix error in memory calculation
* core/vm: address review concerns
* core/vm: avoid unnecessary use of big.Int:BitLen()
This PR adds a new fork which disables EIP-1283. Internally it's called Petersburg,
but the genesis/config field is ConstantinopleFix.
The block numbers are:
7280000 for Constantinople on Mainnet
7280000 for ConstantinopleFix on Mainnet
4939394 for ConstantinopleFix on Ropsten
9999999 for ConstantinopleFix on Rinkeby (real number decided later)
This PR also defaults to using the same ConstantinopleFix number as whatever
Constantinople is set to. That is, it will default to mainnet behaviour if ConstantinopleFix
is not set.This means that for private networks which have already transitioned
to Constantinople, this PR will break the network unless ConstantinopleFix is
explicitly set!
* core/vm: track 63/64 call gas off stack
Gas calculations in gasCall* relayed the available gas for calls by
replacing it on the stack. This lead to inconsistent traces, which we
papered over by copying the pre-execution stack in trace mode.
This change relays available gas using a temporary variable, off the
stack, and allows removing the weird copy.
* core/vm: remove stackCopy
* core/vm: pop call gas into pool
* core/vm: to -> addr
* common/math: optimize PaddedBigBytes, use it more
name old time/op new time/op delta
PaddedBigBytes-8 71.1ns ± 5% 46.1ns ± 1% -35.15% (p=0.000 n=20+19)
name old alloc/op new alloc/op delta
PaddedBigBytes-8 48.0B ± 0% 32.0B ± 0% -33.33% (p=0.000 n=20+20)
* all: unify big.Int zero checks
Various checks were in use. This commit replaces them all with Int.Sign,
which is cheaper and less code.
eg templates:
func before(x *big.Int) bool { return x.BitLen() == 0 }
func after(x *big.Int) bool { return x.Sign() == 0 }
func before(x *big.Int) bool { return x.BitLen() > 0 }
func after(x *big.Int) bool { return x.Sign() != 0 }
func before(x *big.Int) int { return x.Cmp(common.Big0) }
func after(x *big.Int) int { return x.Sign() }
* common/math, crypto/secp256k1: make ReadBits public in package math
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
The run loop, which previously contained custom opcode executes have been
removed and has been simplified to a few checks.
Each operation consists of 4 elements: execution function, gas cost function,
stack validation function and memory size function. The execution function
implements the operation's runtime behaviour, the gas cost function implements
the operation gas costs function and greatly depends on the memory and stack,
the stack validation function validates the stack and makes sure that enough
items can be popped off and pushed on and the memory size function calculates
the memory required for the operation and returns it.
This commit also allows the EVM to go unmetered. This is helpful for offline
operations such as contract calls.