// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "errors" "fmt" "math/big" "reflect" "strings" ) // ConvertType converts an interface of a runtime type into a interface of the // given type // e.g. turn // var fields []reflect.StructField // // fields = append(fields, reflect.StructField{ // Name: "X", // Type: reflect.TypeOf(new(big.Int)), // Tag: reflect.StructTag("json:\"" + "x" + "\""), // } // // into // type TupleT struct { X *big.Int } func ConvertType(in interface{}, proto interface{}) interface{} { protoType := reflect.TypeOf(proto) if reflect.TypeOf(in).ConvertibleTo(protoType) { return reflect.ValueOf(in).Convert(protoType).Interface() } // Use set as a last ditch effort if err := set(reflect.ValueOf(proto), reflect.ValueOf(in)); err != nil { panic(err) } return proto } // indirect recursively dereferences the value until it either gets the value // or finds a big.Int func indirect(v reflect.Value) reflect.Value { if v.Kind() == reflect.Ptr && v.Elem().Type() != reflect.TypeOf(big.Int{}) { return indirect(v.Elem()) } return v } // reflectIntType returns the reflect using the given size and // unsignedness. func reflectIntType(unsigned bool, size int) reflect.Type { if unsigned { switch size { case 8: return reflect.TypeOf(uint8(0)) case 16: return reflect.TypeOf(uint16(0)) case 32: return reflect.TypeOf(uint32(0)) case 64: return reflect.TypeOf(uint64(0)) } } switch size { case 8: return reflect.TypeOf(int8(0)) case 16: return reflect.TypeOf(int16(0)) case 32: return reflect.TypeOf(int32(0)) case 64: return reflect.TypeOf(int64(0)) } return reflect.TypeOf(&big.Int{}) } // mustArrayToByteSlice creates a new byte slice with the exact same size as value // and copies the bytes in value to the new slice. func mustArrayToByteSlice(value reflect.Value) reflect.Value { slice := reflect.MakeSlice(reflect.TypeOf([]byte{}), value.Len(), value.Len()) reflect.Copy(slice, value) return slice } // set attempts to assign src to dst by either setting, copying or otherwise. // // set is a bit more lenient when it comes to assignment and doesn't force an as // strict ruleset as bare `reflect` does. func set(dst, src reflect.Value) error { dstType, srcType := dst.Type(), src.Type() switch { case dstType.Kind() == reflect.Interface && dst.Elem().IsValid(): return set(dst.Elem(), src) case dstType.Kind() == reflect.Ptr && dstType.Elem() != reflect.TypeOf(big.Int{}): return set(dst.Elem(), src) case srcType.AssignableTo(dstType) && dst.CanSet(): dst.Set(src) case dstType.Kind() == reflect.Slice && srcType.Kind() == reflect.Slice && dst.CanSet(): return setSlice(dst, src) case dstType.Kind() == reflect.Array: return setArray(dst, src) case dstType.Kind() == reflect.Struct: return setStruct(dst, src) default: return fmt.Errorf("abi: cannot unmarshal %v in to %v", src.Type(), dst.Type()) } return nil } // setSlice attempts to assign src to dst when slices are not assignable by default // e.g. src: [][]byte -> dst: [][15]byte // setSlice ignores if we cannot copy all of src' elements. func setSlice(dst, src reflect.Value) error { slice := reflect.MakeSlice(dst.Type(), src.Len(), src.Len()) for i := 0; i < src.Len(); i++ { if src.Index(i).Kind() == reflect.Struct { if err := set(slice.Index(i), src.Index(i)); err != nil { return err } } else { // e.g. [][32]uint8 to []libcommon.Hash if err := set(slice.Index(i), src.Index(i)); err != nil { return err } } } if dst.CanSet() { dst.Set(slice) return nil } return errors.New("cannot set slice, destination not settable") } func setArray(dst, src reflect.Value) error { if src.Kind() == reflect.Ptr { return set(dst, indirect(src)) } array := reflect.New(dst.Type()).Elem() min := src.Len() if src.Len() > dst.Len() { min = dst.Len() } for i := 0; i < min; i++ { if err := set(array.Index(i), src.Index(i)); err != nil { return err } } if dst.CanSet() { dst.Set(array) return nil } return errors.New("cannot set array, destination not settable") } func setStruct(dst, src reflect.Value) error { for i := 0; i < src.NumField(); i++ { srcField := src.Field(i) dstField := dst.Field(i) if !dstField.IsValid() || !srcField.IsValid() { return fmt.Errorf("could not find src field: %v value: %v in destination", srcField.Type().Name(), srcField) } if err := set(dstField, srcField); err != nil { return err } } return nil } // mapArgNamesToStructFields maps a slice of argument names to struct fields. // first round: for each Exportable field that contains a `abi:""` tag // // and this field name exists in the given argument name list, pair them together. // // second round: for each argument name that has not been already linked, // // find what variable is expected to be mapped into, if it exists and has not been // used, pair them. // // Note this function assumes the given value is a struct value. func mapArgNamesToStructFields(argNames []string, value reflect.Value) (map[string]string, error) { typ := value.Type() abi2struct := make(map[string]string) struct2abi := make(map[string]string) // first round ~~~ for i := 0; i < typ.NumField(); i++ { structFieldName := typ.Field(i).Name // skip private struct fields. if structFieldName[:1] != strings.ToUpper(structFieldName[:1]) { continue } // skip fields that have no abi:"" tag. tagName, ok := typ.Field(i).Tag.Lookup("abi") if !ok { continue } // check if tag is empty. if tagName == "" { return nil, fmt.Errorf("struct: abi tag in '%s' is empty", structFieldName) } // check which argument field matches with the abi tag. found := false for _, arg := range argNames { if arg == tagName { if abi2struct[arg] != "" { return nil, fmt.Errorf("struct: abi tag in '%s' already mapped", structFieldName) } // pair them abi2struct[arg] = structFieldName struct2abi[structFieldName] = arg found = true } } // check if this tag has been mapped. if !found { return nil, fmt.Errorf("struct: abi tag '%s' defined but not found in abi", tagName) } } // second round ~~~ for _, argName := range argNames { structFieldName := ToCamelCase(argName) if structFieldName == "" { return nil, fmt.Errorf("abi: purely underscored output cannot unpack to struct") } // this abi has already been paired, skip it... unless there exists another, yet unassigned // struct field with the same field name. If so, raise an error: // abi: [ { "name": "value" } ] // struct { Value *big.Int , Value1 *big.Int `abi:"value"`} if abi2struct[argName] != "" { if abi2struct[argName] != structFieldName && struct2abi[structFieldName] == "" && value.FieldByName(structFieldName).IsValid() { return nil, fmt.Errorf("abi: multiple variables maps to the same abi field '%s'", argName) } continue } // return an error if this struct field has already been paired. if struct2abi[structFieldName] != "" { return nil, fmt.Errorf("abi: multiple outputs mapping to the same struct field '%s'", structFieldName) } if value.FieldByName(structFieldName).IsValid() { // pair them abi2struct[argName] = structFieldName struct2abi[structFieldName] = argName } else { // not paired, but annotate as used, to detect cases like // abi : [ { "name": "value" }, { "name": "_value" } ] // struct { Value *big.Int } struct2abi[structFieldName] = argName } } return abi2struct, nil }