// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package miner import ( "bytes" "context" "errors" "fmt" "math/big" "math/rand" "sync" "sync/atomic" "time" mapset "github.com/deckarep/golang-set" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/debug" "github.com/ledgerwatch/turbo-geth/consensus" "github.com/ledgerwatch/turbo-geth/consensus/misc" "github.com/ledgerwatch/turbo-geth/core" "github.com/ledgerwatch/turbo-geth/core/state" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/eth/stagedsync" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/params" ) const ( // resultQueueSize is the size of channel listening to sealing result. resultQueueSize = 10 // txChanSize is the size of channel listening to NewTxsEvent. // The number is referenced from the size of tx pool. txChanSize = 4096 // chainHeadChanSize is the size of channel listening to ChainHeadEvent. chainHeadChanSize = 10 // chainSideChanSize is the size of channel listening to ChainSideEvent. chainSideChanSize = 10 // resubmitAdjustChanSize is the size of resubmitting interval adjustment channel. resubmitAdjustChanSize = 10 // miningLogAtDepth is the number of confirmations before logging successful mining. miningLogAtDepth = 7 // minRecommitInterval is the minimal time interval to recreate the mining block with // any newly arrived transactions. minRecommitInterval = 1 * time.Second // maxRecommitInterval is the maximum time interval to recreate the mining block with // any newly arrived transactions. maxRecommitInterval = 15 * time.Second // intervalAdjustRatio is the impact a single interval adjustment has on sealing work // resubmitting interval. intervalAdjustRatio = 0.1 // intervalAdjustBias is applied during the new resubmit interval calculation in favor of // increasing upper limit or decreasing lower limit so that the limit can be reachable. intervalAdjustBias = 200 * 1000.0 * 1000.0 // staleThreshold is the maximum depth of the acceptable stale block. staleThreshold = 7 ) // task contains all information for consensus engine sealing and result submitting. type task struct { receipts []*types.Receipt state *state.IntraBlockState tds *state.TrieDbState block *types.Block createdAt time.Time ctx consensus.Cancel } const ( commitInterruptNone int32 = iota commitInterruptNewHead commitInterruptResubmit ) // newWorkReq represents a request for new sealing work submitting with relative interrupt notifier. type newWorkReq struct { interrupt *int32 noempty bool timestamp int64 cancel consensus.Cancel } // intervalAdjust represents a resubmitting interval adjustment. type intervalAdjust struct { ratio float64 inc bool } // worker is the main object which takes care of submitting new work to consensus engine // and gathering the sealing result. type worker struct { config *Config chainConfig *params.ChainConfig engine consensus.Engine eth Backend chain *core.BlockChain // Feeds pendingLogsFeed event.Feed // Subscriptions mux *event.TypeMux txsCh chan core.NewTxsEvent txsSub event.Subscription chainHeadCh chan core.ChainHeadEvent chainHeadSub event.Subscription chainSideCh chan core.ChainSideEvent chainSideSub event.Subscription // Channels newWorkCh chan *newWorkReq taskCh chan *task startCh chan struct{} exitCh chan struct{} resubmitIntervalCh chan time.Duration resubmitAdjustCh chan *intervalAdjust current *environment // An environment for current running cycle. uncles *miningUncles mu sync.RWMutex // The lock used to protect the coinbase and extra fields coinbase common.Address extra []byte snapshotMu sync.RWMutex // The lock used to protect the block snapshot and state snapshot snapshotBlock *types.Block snapshotState *state.IntraBlockState snapshotTds *state.TrieDbState // atomic status counters running int32 // The indicator whether the consensus engine is running or not. newTxs int32 // New arrival transaction count since last sealing work submitting. // noempty is the flag used to control whether the feature of pre-seal empty // block is enabled. The default value is false(pre-seal is enabled by default). // But in some special scenario the consensus engine will seal blocks instantaneously, // in this case this feature will add all empty blocks into canonical chain // non-stop and no real transaction will be included. noempty uint32 hooks initOnce sync.Once canonicalMining []consensus.Cancel canonicalMiningMu sync.Mutex n int } type hooks struct { // External functions isLocalBlock func(block *types.Block) bool // Function used to determine whether the specified block is mined by local miner. // Test hooks newTaskHook func(*task) // Method to call upon receiving a new sealing task. skipSealHook func(*task) bool // Method to decide whether skipping the sealing. fullTaskHook func() // Method to call before pushing the full sealing task. resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval. } func newWorker(config *Config, chainConfig *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, h hooks, init bool) *worker { worker := &worker{ config: config, chainConfig: chainConfig, engine: engine, eth: eth, mux: mux, chain: eth.BlockChain(), hooks: h, uncles: newUncles(), newWorkCh: make(chan *newWorkReq, 1), taskCh: make(chan *task, 1), exitCh: make(chan struct{}), startCh: make(chan struct{}, 1), resubmitIntervalCh: make(chan time.Duration), resubmitAdjustCh: make(chan *intervalAdjust, resubmitAdjustChanSize), n: rand.Intn(100), } // Submit first work to initialize pending state. if init { if atomic.CompareAndSwapInt32(&worker.running, 0, 1) { log.Warn("Worker constructor. init stage") log.Info("The mining is started", "threads", worker.n) worker.startCh <- struct{}{} } } return worker } // setEtherbase sets the etherbase used to initialize the block coinbase field. func (w *worker) setEtherbase(addr common.Address) { w.mu.Lock() defer w.mu.Unlock() w.coinbase = addr } // setExtra sets the content used to initialize the block extra field. func (w *worker) setExtra(extra []byte) { w.mu.Lock() defer w.mu.Unlock() w.extra = extra } // setRecommitInterval updates the interval for miner sealing work recommitting. func (w *worker) setRecommitInterval(interval time.Duration) { w.resubmitIntervalCh <- interval } // disablePreseal disables pre-sealing mining feature func (w *worker) disablePreseal() { atomic.StoreUint32(&w.noempty, 1) } // enablePreseal enables pre-sealing mining feature func (w *worker) enablePreseal() { atomic.StoreUint32(&w.noempty, 0) } // pending returns the pending state and corresponding block. func (w *worker) pending() (*types.Block, *state.IntraBlockState, *state.TrieDbState) { // return a snapshot to avoid contention on currentMu mutex w.snapshotMu.RLock() defer w.snapshotMu.RUnlock() if w.snapshotState == nil { return nil, nil, nil } return w.snapshotBlock, w.snapshotState, w.snapshotTds.Copy() } // pendingBlock returns pending block. func (w *worker) pendingBlock() *types.Block { // return a snapshot to avoid contention on currentMu mutex w.snapshotMu.RLock() defer w.snapshotMu.RUnlock() return w.snapshotBlock } func (w *worker) init() { w.initOnce.Do(func() { time.Sleep(5 * time.Second) w.txsCh = make(chan core.NewTxsEvent, txChanSize) w.chainHeadCh = make(chan core.ChainHeadEvent, chainHeadChanSize) w.chainSideCh = make(chan core.ChainSideEvent, chainSideChanSize) // Subscribe NewTxsEvent for tx pool w.txsSub = w.eth.TxPool().SubscribeNewTxsEvent(w.txsCh) // Subscribe events for blockchain w.chainHeadSub = w.eth.BlockChain().SubscribeChainHeadEvent(w.chainHeadCh) w.chainSideSub = w.eth.BlockChain().SubscribeChainSideEvent(w.chainSideCh) // Sanitize recommit interval if the user-specified one is too short. recommit := w.config.Recommit if recommit < minRecommitInterval { log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval) recommit = minRecommitInterval } // commit aborts in-flight transaction execution with given signal and resubmits a new one. commit, timestamp := w.getCommit() go w.mainLoop() go w.newWorkLoop(recommit) go w.chainEvents(timestamp, commit) go w.taskLoop() }) } // start sets the running status as 1 and triggers new work submitting. func (w *worker) start() { if atomic.CompareAndSwapInt32(&w.running, 0, 1) { log.Warn("worker start") w.init() w.startCh <- struct{}{} } } // stop sets the running status as 0. func (w *worker) stop() { atomic.StoreInt32(&w.running, 0) } // isRunning returns an indicator whether worker is running or not. func (w *worker) isRunning() bool { return atomic.LoadInt32(&w.running) == 1 } // close terminates all background threads maintained by the worker. // Note the worker does not support being closed multiple times. func (w *worker) close() { atomic.StoreInt32(&w.running, 0) close(w.exitCh) } // recalcRecommit recalculates the resubmitting interval upon feedback. func recalcRecommit(minRecommit, prev time.Duration, target float64, inc bool) time.Duration { var ( prevF = float64(prev.Nanoseconds()) next float64 ) if inc { next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias) max := float64(maxRecommitInterval.Nanoseconds()) if next > max { next = max } } else { next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias) min := float64(minRecommit.Nanoseconds()) if next < min { next = min } } return time.Duration(int64(next)) } // newWorkLoop is a standalone goroutine to submit new mining work upon received events. func (w *worker) newWorkLoop(recommit time.Duration) { var ( minRecommit = recommit // minimal resubmit interval specified by user. ) timer := time.NewTimer(0) defer timer.Stop() <-timer.C // discard the initial tick for { select { case interval := <-w.resubmitIntervalCh: // Adjust resubmit interval explicitly by user. if interval < minRecommitInterval { log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval) interval = minRecommitInterval } log.Info("Miner recommit interval update", "from", minRecommit, "to", interval) minRecommit, recommit = interval, interval if w.resubmitHook != nil { w.resubmitHook(minRecommit, recommit) } case adjust := <-w.resubmitAdjustCh: // Adjust resubmit interval by feedback. if adjust.inc { before := recommit target := float64(recommit.Nanoseconds()) / adjust.ratio recommit = recalcRecommit(minRecommit, recommit, target, true) log.Trace("Increase miner recommit interval", "from", before, "to", recommit) } else { before := recommit recommit = recalcRecommit(minRecommit, recommit, float64(minRecommit.Nanoseconds()), false) log.Trace("Decrease miner recommit interval", "from", before, "to", recommit) } if w.resubmitHook != nil { w.resubmitHook(minRecommit, recommit) } case <-w.exitCh: return } } } func (w *worker) getCommit() (func(ctx consensus.Cancel, noempty bool, s int32), *int64) { var interrupt atomic.Value timestamp := new(int64) // timestamp for each round of mining. return func(ctx consensus.Cancel, noempty bool, s int32) { if v := interrupt.Load(); v != nil { stored := v.(*int32) atomic.StoreInt32(stored, s) } else { interrupt.Store(new(int32)) } v := interrupt.Load().(*int32) w.newWorkCh <- &newWorkReq{interrupt: v, noempty: noempty, timestamp: atomic.LoadInt64(timestamp), cancel: consensus.NewCancel()} atomic.StoreInt32(&w.newTxs, 0) }, timestamp } // mainLoop is a standalone goroutine to regenerate the sealing task based on the received event. func (w *worker) mainLoop() { defer w.txsSub.Unsubscribe() for { select { case req := <-w.newWorkCh: log.Warn("mining: a new work") w.commitNewWork(req.cancel, req.interrupt, req.noempty, req.timestamp) case ev := <-w.txsCh: //fixme can be removed? // Apply transactions to the pending state if we're not mining. // // Note all transactions received may not be continuous with transactions // already included in the current mining block. These transactions will // be automatically eliminated. if !w.isRunning() && w.current != nil { // If block is already full, abort if gp := w.current.gasPool; gp != nil && gp.Gas() < params.TxGas { continue } w.mu.RLock() coinbase := w.coinbase w.mu.RUnlock() txs := make(map[common.Address]types.Transactions) for _, tx := range ev.Txs { acc, _ := types.Sender(w.current.signer, tx) txs[acc] = append(txs[acc], tx) } txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs) tcount := w.current.tcount w.commitTransactions(txset, coinbase, nil) // Only update the snapshot if any new transactons were added // to the pending block if tcount != w.current.tcount { w.updateSnapshot() } } else { // Special case, if the consensus engine is 0 period clique(dev mode), // submit mining work here since all empty submission will be rejected // by clique. Of course the advance sealing(empty submission) is disabled. if w.chainConfig.Clique != nil && w.chainConfig.Clique.Period == 0 { w.commitNewWork(consensus.StabCancel(), nil, true, time.Now().Unix()) } } atomic.AddInt32(&w.newTxs, int32(len(ev.Txs))) // System stopped case <-w.exitCh: return case <-w.txsSub.Err(): return case <-w.chainHeadSub.Err(): return case <-w.chainSideSub.Err(): return } } } func (w *worker) chainEvents(timestamp *int64, commit func(ctx consensus.Cancel, noempty bool, s int32)) { defer w.chainHeadSub.Unsubscribe() defer w.chainSideSub.Unsubscribe() for { select { case <-w.startCh: log.Warn("mining: worker start event") w.clearCanonicalChainContext() atomic.StoreInt64(timestamp, time.Now().Unix()) commit(consensus.NewCancel(), false, commitInterruptNewHead) case head := <-w.chainHeadCh: log.Warn("mining: worker chain event", "number", head.Block.NumberU64(), "hash", head.Block.Hash().String(), "parentHash", head.Block.ParentHash().String(), ) currentNumber := w.current.Number() if head.Block.Number().Cmp(currentNumber) < 0 { log.Warn("mining event for an ancestor block", "eventBlockNumber", head.Block.Number().Uint64(), "eventBlockHash", head.Block.Hash().String(), "chainBlockNumber", w.chain.CurrentBlock().Number().Uint64(), "chainBlockHash", w.chain.CurrentBlock().Hash().String(), "minerBlockNumber", currentNumber.Uint64(), "minerBlockHash", w.current.Hash().String(), ) continue } go func(ctx consensus.Cancel) { defer ctx.CancelFunc() w.clearCanonicalChainContext() atomic.StoreInt64(timestamp, time.Now().Unix()) commit(ctx, false, commitInterruptNewHead) }(w.getCanonicalChainContext()) case ev := <-w.chainSideCh: go func(ctx consensus.Cancel, ev core.ChainSideEvent) { defer ctx.CancelFunc() w.clearCanonicalChainContext() // Short circuit for duplicate side blocks if exist := w.uncles.has(ev.Block.Hash()); exist { return } // Add side block to possible uncle block set depending on the author. if w.isLocalBlock != nil && w.isLocalBlock(ev.Block) { w.uncles.setLocal(ev.Block) } else { w.uncles.setRemote(ev.Block) } // fixme can be removed // If our mining block contains less than 2 uncle blocks, // add the new uncle block if valid and regenerate a mining block. if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 { start := time.Now() if err := w.commitUncle(w.current, ev.Block.Header()); err != nil { ctx.CancelFunc() log.Debug("cannot commit uncle", "err", err) return } var uncles []*types.Header w.current.uncles.Each(func(item interface{}) bool { hash, ok := item.(common.Hash) if !ok { return false } uncle, exist := w.uncles.get(hash) if !exist { return false } uncles = append(uncles, uncle.Header()) return false }) if err := w.commit(ctx, uncles, nil, true, start); err != nil { ctx.CancelFunc() log.Debug("cannot commit a block", "err", err) } } }(w.getCanonicalChainContext(), ev) // System stopped case <-w.exitCh: return case <-w.chainHeadSub.Err(): return case <-w.chainSideSub.Err(): return } } } // taskLoop is a standalone goroutine to fetch sealing task from the generator and // push them to consensus engine. func (w *worker) taskLoop() { var prev common.Hash for { select { case task := <-w.taskCh: log.Warn("mining task", "number", task.block.NumberU64(), "hash", task.block.Hash().String()) if w.newTaskHook != nil { w.newTaskHook(task) } // Reject duplicate sealing work due to resubmitting. sealHash := w.engine.SealHash(task.block.Header()) if sealHash == prev { continue } prev = sealHash if w.skipSealHook != nil && w.skipSealHook(task) { continue } resultCh := make(chan consensus.ResultWithContext, 1) if err := w.engine.Seal(task.ctx, w.chain, task.block, resultCh, task.ctx.Done()); err != nil { log.Warn("Block sealing failed", "err", err) } w.insertToChain(<-resultCh, task.createdAt, sealHash, task, false) case <-w.exitCh: return } } } func (w *worker) insertToChain(result consensus.ResultWithContext, createdAt time.Time, sealHash common.Hash, task *task, directInsert bool) { // Short circuit when receiving empty result. if result.Block == nil { return } block := result.Block // Short circuit when receiving duplicate result caused by resubmitting. if w.chain.HasBlock(block.Hash(), block.NumberU64()) { log.Warn("Duplicate result caused by resubmitting", "number", block.NumberU64(), "hash", block.Hash().String()) return } // Different block could share same sealhash, deep copy here to prevent write-write conflict. if directInsert { var ( receipts = make([]*types.Receipt, len(task.receipts)) logs = make([]*types.Log, len(task.receipts)) ) hash := block.Hash() for i, receipt := range task.receipts { // add block location fields receipt.BlockHash = hash receipt.BlockNumber = block.Number() receipt.TransactionIndex = uint(i) receipts[i] = new(types.Receipt) *receipts[i] = *receipt // Update the block hash in all logs since it is now available and not when the // receipt/log of individual transactions were created. for _, log := range receipt.Logs { log.BlockHash = hash } logs = append(logs, receipt.Logs...) } // Commit block and state to database. _, err := w.chain.WriteBlockWithState(result.Cancel, block, receipts, logs, task.state, task.tds, true) if err != nil { log.Error("Failed writing block with state", "err", err) return } log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealHash, "hash", block.Hash(), "elapsed", common.PrettyDuration(time.Since(createdAt)), "difficulty", block.Difficulty()) } else { if err := stagedsync.InsertBlockInStages(w.chain.ChainDb(), w.chain.Config(), w.chain.Engine(), block, w.chain); err != nil { log.Error("Failed writing block to chain", "err", err) return } } // Broadcast the block and announce chain insertion event _ = w.mux.Post(core.NewMinedBlockEvent{Block: block}) } // makeCurrent creates a new environment for the current cycle. func (w *worker) makeCurrent(ctx consensus.Cancel, parent *types.Block, header *types.Header) error { select { case <-ctx.Done(): return errors.New("context is done") default: } stateV, tds, err := GetState(w.chain, parent) if err != nil { return err } env := &environment{ signer: types.NewEIP155Signer(w.chainConfig.ChainID), state: stateV, tds: tds, ancestors: mapset.NewSet(), family: mapset.NewSet(), uncles: mapset.NewSet(), header: header, RWMutex: new(sync.RWMutex), ctx: ctx, } // when 08 is processed ancestors contain 07 (quick block) for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) { for _, uncle := range ancestor.Uncles() { env.family.Add(uncle.Hash()) } env.family.Add(ancestor.Hash()) env.ancestors.Add(ancestor.Hash()) } // Keep track of transactions which return errors so they can be removed env.tcount = 0 if w.current == nil { w.current = env } else { w.current.Set(env) } return nil } // commitUncle adds the given block to uncle block set, returns error if failed to add. func (w *worker) commitUncle(env *environment, uncle *types.Header) error { hash := uncle.Hash() if env.uncles.Contains(hash) { return errors.New("uncle not unique") } if env.ParentHash() == uncle.ParentHash { return errors.New("uncle is sibling") } if !env.ancestors.Contains(uncle.ParentHash) { return errors.New("uncle's parent unknown") } if env.family.Contains(hash) { return errors.New("uncle already included") } env.uncles.Add(uncle.Hash()) return nil } // updateSnapshot updates pending snapshot block and state. // Note this function assumes the current variable is thread safe. func (w *worker) updateSnapshot() { w.snapshotMu.Lock() defer w.snapshotMu.Unlock() var uncles []*types.Header w.current.uncles.Each(func(item interface{}) bool { hash, ok := item.(common.Hash) if !ok { return false } uncle, exist := w.uncles.get(hash) if !exist { return false } uncles = append(uncles, uncle.Header()) return false }) w.snapshotBlock = types.NewBlock( w.current.GetHeader(), w.current.txs, uncles, w.current.receipts, ) w.snapshotState = w.current.state w.snapshotTds = w.current.tds.WithNewBuffer() } func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) { snap := w.current.state.Snapshot() header := w.current.GetHeader() receipt, err := core.ApplyTransaction(w.chainConfig, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.tds.TrieStateWriter(), header, tx, &header.GasUsed, *w.chain.GetVMConfig()) if err != nil { w.current.state.RevertToSnapshot(snap) return nil, err } if !w.chainConfig.IsByzantium(w.current.Number()) { w.current.tds.StartNewBuffer() } w.current.txs = append(w.current.txs, tx) w.current.receipts = append(w.current.receipts, receipt) return receipt.Logs, nil } func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool { // Short circuit if current is nil if w.current == nil { return true } header := w.current.GetHeader() if w.current.gasPool == nil { w.current.gasPool = new(core.GasPool).AddGas(header.GasLimit) } w.current.tds.StartNewBuffer() var coalescedLogs []*types.Log for { // In the following three cases, we will interrupt the execution of the transaction. // (1) new head block event arrival, the interrupt signal is 1 // (2) worker start or restart, the interrupt signal is 1 // (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2. // For the first two cases, the semi-finished work will be discarded. // For the third case, the semi-finished work will be submitted to the consensus engine. if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone { // Notify resubmit loop to increase resubmitting interval due to too frequent commits. if atomic.LoadInt32(interrupt) == commitInterruptResubmit { ratio := float64(header.GasLimit-w.current.gasPool.Gas()) / float64(header.GasLimit) if ratio < 0.1 { ratio = 0.1 } w.resubmitAdjustCh <- &intervalAdjust{ ratio: ratio, inc: true, } } return atomic.LoadInt32(interrupt) == commitInterruptNewHead } // If we don't have enough gas for any further transactions then we're done if w.current.gasPool.Gas() < params.TxGas { log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas) break } // Retrieve the next transaction and abort if all done tx := txs.Peek() if tx == nil { break } // Error may be ignored here. The error has already been checked // during transaction acceptance is the transaction pool. // // We use the eip155 signer regardless of the current hf. from, _ := types.Sender(w.current.signer, tx) // Check whether the tx is replay protected. If we're not in the EIP155 hf // phase, start ignoring the sender until we do. if tx.Protected() && !w.chainConfig.IsEIP155(header.Number) { log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.chainConfig.EIP155Block) txs.Pop() continue } // Start executing the transaction w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount) logs, err := w.commitTransaction(tx, coinbase) switch err { case core.ErrGasLimitReached: // Pop the current out-of-gas transaction without shifting in the next from the account log.Trace("Gas limit exceeded for current block", "sender", from) txs.Pop() case core.ErrNonceTooLow: // New head notification data race between the transaction pool and miner, shift log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce()) txs.Shift() case core.ErrNonceTooHigh: // Reorg notification data race between the transaction pool and miner, skip account = log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce()) txs.Pop() case nil: // Everything ok, collect the logs and shift in the next transaction from the same account coalescedLogs = append(coalescedLogs, logs...) w.current.tcount++ txs.Shift() default: // Strange error, discard the transaction and get the next in line (note, the // nonce-too-high clause will prevent us from executing in vain). log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err) txs.Shift() } } if !w.isRunning() && len(coalescedLogs) > 0 { // We don't push the pendingLogsEvent while we are mining. The reason is that // when we are mining, the worker will regenerate a mining block every 3 seconds. // In order to avoid pushing the repeated pendingLog, we disable the pending log pushing. // make a copy, the state caches the logs and these logs get "upgraded" from pending to mined // logs by filling in the block hash when the block was mined by the local miner. This can // cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed. cpy := make([]*types.Log, len(coalescedLogs)) for i, l := range coalescedLogs { cpy[i] = new(types.Log) *cpy[i] = *l } w.pendingLogsFeed.Send(cpy) } // Notify resubmit loop to decrease resubmitting interval if current interval is larger // than the user-specified one. if interrupt != nil { w.resubmitAdjustCh <- &intervalAdjust{inc: false} } return false } // commitNewWork generates several new sealing tasks based on the parent block. func (w *worker) commitNewWork(ctx consensus.Cancel, interrupt *int32, noempty bool, timestamp int64) { select { case <-ctx.Done(): return default: } w.mu.RLock() defer w.mu.RUnlock() tstart := time.Now() parent := w.chain.CurrentBlock() if parent.Time() >= uint64(timestamp) { timestamp = int64(parent.Time() + 1) } num := parent.Number() header := &types.Header{ ParentHash: parent.Hash(), Number: num.Add(num, common.Big1), GasLimit: core.CalcGasLimit(parent, w.config.GasFloor, w.config.GasCeil), Extra: w.extra, Time: uint64(timestamp), } // Only set the coinbase if our consensus engine is running (avoid spurious block rewards) if w.isRunning() { if w.coinbase == (common.Address{}) { log.Error("Refusing to mine without etherbase") ctx.CancelFunc() return } header.Coinbase = w.coinbase } if err := w.engine.Prepare(w.chain, header); err != nil { log.Error("Failed to prepare header for mining", "err", err, "headerNumber", header.Number.Uint64(), "headerRoot", header.Root.String(), "headerParentHash", header.ParentHash.String(), "parentNumber", parent.Number().Uint64(), "parentHash", parent.Hash().String(), "callers", debug.Callers(10)) ctx.CancelFunc() return } // If we are care about TheDAO hard-fork check whether to override the extra-data or not if daoBlock := w.chainConfig.DAOForkBlock; daoBlock != nil { // Check whether the block is among the fork extra-override range limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 { // Depending whether we support or oppose the fork, override differently if w.chainConfig.DAOForkSupport { header.Extra = common.CopyBytes(params.DAOForkBlockExtra) } else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) { header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data } } } // Could potentially happen if starting to mine in an odd state. err := w.makeCurrent(ctx, parent, header) if err != nil { log.Error("Failed to create mining context", "err", err) ctx.CancelFunc() return } // Create the current work task and check any fork transitions needed env := w.current if w.chainConfig.DAOForkSupport && w.chainConfig.DAOForkBlock != nil && w.chainConfig.DAOForkBlock.Cmp(header.Number) == 0 { misc.ApplyDAOHardFork(env.state) } // Accumulate the miningUncles for the current block uncles := make([]*types.Header, 0, 2) commitUncles := func(u *miningUncles) { u.Lock() defer u.Unlock() for _, blocks := range []map[common.Hash]*types.Block{u.localUncles, u.remoteUncles} { // Clean up stale uncle blocks first for hash, uncle := range blocks { if uncle.NumberU64()+staleThreshold <= header.Number.Uint64() { delete(blocks, hash) } } for hash, uncle := range blocks { if len(uncles) == 2 { break } if err = w.commitUncle(env, uncle.Header()); err != nil { log.Trace("Possible uncle rejected", "hash", hash, "reason", err) } else { log.Debug("Committing new uncle to block", "hash", hash) uncles = append(uncles, uncle.Header()) } } } } // Prefer to locally generated uncle commitUncles(w.uncles) // Create an empty block based on temporary copied state for // sealing in advance without waiting block execution finished. if !noempty && atomic.LoadUint32(&w.noempty) == 0 { now := time.Now() if err = w.commit(ctx, uncles, nil, false, tstart); err != nil { log.Error("Failed to commit empty block", "err", err) ctx.CancelFunc() } log.Info("Commit an empty block", "number", header.Number, "duration", time.Since(now)) } // Fill the block with all available pending transactions. pending, err := w.eth.TxPool().Pending() if err != nil { log.Error("Failed to fetch pending transactions", "err", err) ctx.CancelFunc() return } // Short circuit if there is no available pending transactions. // But if we disable empty precommit already, ignore it. Since // empty block is necessary to keep the liveness of the network. if len(pending) == 0 && atomic.LoadUint32(&w.noempty) == 0 { w.updateSnapshot() return } // Split the pending transactions into locals and remotes localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending for _, account := range w.eth.TxPool().Locals() { if txs := remoteTxs[account]; len(txs) > 0 { delete(remoteTxs, account) localTxs[account] = txs } } if len(localTxs) > 0 { txs := types.NewTransactionsByPriceAndNonce(w.current.signer, localTxs) if w.commitTransactions(txs, w.coinbase, interrupt) { return } } if len(remoteTxs) > 0 { txs := types.NewTransactionsByPriceAndNonce(w.current.signer, remoteTxs) if w.commitTransactions(txs, w.coinbase, interrupt) { return } } now := time.Now() if err = w.commit(ctx, uncles, w.fullTaskHook, true, tstart); err != nil { log.Error("Failed to commit block", "err", err) ctx.CancelFunc() } log.Info("Commit a block with transactions", "number", header.Number, "duration", time.Since(now)) } // commit runs any post-transaction state modifications, assembles the final block // and commits new work if consensus engine is running. func (w *worker) commit(ctx consensus.Cancel, uncles []*types.Header, interval func(), update bool, start time.Time) error { // Deep copy receipts here to avoid interaction between different tasks. receipts := copyReceipts(w.current.receipts) s := &(*w.current.state) block, err := NewBlock(w.engine, s, w.current.tds, w.chain.Config(), w.current.GetHeader(), w.current.txs, uncles, w.current.receipts) if err != nil { return err } w.current.SetHeader(block.Header()) if w.isRunning() { if interval != nil { interval() } select { case w.taskCh <- &task{receipts: receipts, state: s, tds: w.current.tds, block: block, createdAt: time.Now(), ctx: ctx}: log.Warn("mining: worker task event", "number", block.NumberU64(), "hash", block.Hash().String(), "parentHash", block.ParentHash().String(), ) log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()), "uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", totalFees(block, receipts), "elapsed", common.PrettyDuration(time.Since(start))) case <-w.exitCh: log.Info("Worker has exited") } } if update { w.updateSnapshot() } return nil } // copyReceipts makes a deep copy of the given receipts. func copyReceipts(receipts []*types.Receipt) []*types.Receipt { result := make([]*types.Receipt, len(receipts)) for i, l := range receipts { cpy := *l result[i] = &cpy } return result } func (w *worker) getCanonicalChainContext() consensus.Cancel { ctx := consensus.NewCancel() w.canonicalMiningMu.Lock() w.canonicalMining = append(w.canonicalMining, ctx) w.canonicalMiningMu.Unlock() return ctx } func (w *worker) clearCanonicalChainContext() { w.canonicalMiningMu.Lock() defer w.canonicalMiningMu.Unlock() for _, ctx := range w.canonicalMining { ctx.CancelFunc() } w.canonicalMining = nil } // postSideBlock fires a side chain event, only use it for testing. func (w *worker) postSideBlock(event core.ChainSideEvent) { select { case w.chainSideCh <- event: case <-w.exitCh: } } // totalFees computes total consumed fees in ETH. Block transactions and receipts have to have the same order. func totalFees(block *types.Block, receipts []*types.Receipt) *big.Float { feesWei := new(big.Int) for i, tx := range block.Transactions() { feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice().ToBig())) } return new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether))) } func NewBlock(engine consensus.Engine, s *state.IntraBlockState, tds *state.TrieDbState, chainConfig *params.ChainConfig, header *types.Header, txs []*types.Transaction, uncles []*types.Header, receipts []*types.Receipt) (*types.Block, error) { block, err := engine.FinalizeAndAssemble(chainConfig, header, s, txs, uncles, receipts) if err != nil { return nil, err } ctx := chainConfig.WithEIPsFlags(context.Background(), header.Number) if err = s.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { return nil, err } if _, err = tds.ResolveStateTrie(false, false); err != nil { return nil, fmt.Errorf("newBlock on %s: %w", header.Number.String(), err) } root, err := tds.CalcTrieRoots(false) if err != nil { return nil, err } header = block.Header() header.Root = root return types.NewBlock(header, txs, uncles, receipts), nil } func GetState(blockchain *core.BlockChain, parent *types.Block) (*state.IntraBlockState, *state.TrieDbState, error) { current := blockchain.CurrentBlock() if current.Number().Cmp(parent.Number()) != 0 || current.Root() != parent.Root() { log.Error("mining not on a current chain", "currentNumber", current.Number().Uint64(), "parentNumber", parent.Number().Uint64(), "currentRoot", current.Root().String(), "parentRoot", parent.Root().String(), ) return nil, nil, errors.New("mining in an odd state") } tds, err := blockchain.GetTrieDbState() if err != nil { return nil, nil, err } tds = tds.WithNewBuffer() tds.SetResolveReads(false) tds.SetNoHistory(true) statedb := state.New(tds) return statedb, tds, nil }