// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "context" "errors" "fmt" "strings" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/consensus" "github.com/ledgerwatch/turbo-geth/core/state" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/params" ) // BlockValidator is responsible for validating block headers, uncles and // processed state. // // BlockValidator implements Validator. type BlockValidator struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus.Engine // Consensus engine used for validating } // NewBlockValidator returns a new block validator which is safe for re-use func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus.Engine) *BlockValidator { validator := &BlockValidator{ config: config, engine: engine, bc: blockchain, } return validator } // ValidateBody validates the given block's uncles and verifies the block // header's transaction and uncle roots. The headers are assumed to be already // validated at this point. func (v *BlockValidator) ValidateBody(ctx context.Context, block *types.Block) error { // Check whether the block is linkable _, noHistory := params.GetNoHistoryByBlock(ctx, block.Number()) if !noHistory && v.bc.GetBlockByHash(block.ParentHash()) == nil { return consensus.ErrUnknownAncestor } if err := v.engine.VerifyUncles(v.bc, block); err != nil { return err } if noHistory { return nil } if hash := types.DeriveSha(block.Transactions()); hash != block.Header().TxHash { return nil } if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) { if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) { return consensus.ErrUnknownAncestor } return consensus.ErrPrunedAncestor } return nil } // ValidateReceipts validates block receipts. func (v *BlockValidator) ValidateReceipts(block *types.Block, receipts types.Receipts) error { header := block.Header() var errorBuf strings.Builder // Validate the received block's bloom with the one derived from the generated receipts. // For valid blocks this should always validate to true. rbloom := types.CreateBloom(receipts) if rbloom != header.Bloom { if errorBuf.Len() > 0 { errorBuf.WriteString("; ") } fmt.Fprintf(&errorBuf, "invalid bloom (remote: %x local: %x)", header.Bloom, rbloom) } // Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, Rn]])) if v.config.IsByzantium(block.Header().Number) { receiptSha := types.DeriveSha(receipts) if receiptSha != header.ReceiptHash { if errorBuf.Len() > 0 { errorBuf.WriteString("; ") } for _, r := range receipts { for _, l := range r.Logs { fmt.Printf("receipts: %s %x\n", l.Data, l.Data) } } fmt.Fprintf(&errorBuf, "invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha) } } if errorBuf.Len() > 0 { return errors.New(errorBuf.String()) } return nil } // ValidateGasAndRoot validates the amount of used gas and the state root. func (v *BlockValidator) ValidateGasAndRoot(block *types.Block, root common.Hash, usedGas uint64, tds *state.TrieDbState) error { var errorBuf strings.Builder if block.GasUsed() != usedGas { fmt.Fprintf(&errorBuf, "invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas) } // Validate the state root against the received state root and throw // an error if they don't match. if block.Header().Root != root { if errorBuf.Len() > 0 { errorBuf.WriteString("; ") } fmt.Fprintf(&errorBuf, "[pre-processed] invalid merkle root (remote: %x local: %x)", block.Header().Root, root) } if errorBuf.Len() > 0 { return errors.New(errorBuf.String()) } return nil } // CalcGasLimit computes the gas limit of the next block after parent. It aims // to keep the baseline gas above the provided floor, and increase it towards the // ceil if the blocks are full. If the ceil is exceeded, it will always decrease // the gas allowance. func CalcGasLimit(parentGasUsed, parentGasLimit, gasFloor, gasCeil uint64) uint64 { // contrib = (parentGasUsed * 3 / 2) / 1024 contrib := (parentGasUsed + parentGasUsed/2) / params.GasLimitBoundDivisor // decay = parentGasLimit / 1024 -1 decay := parentGasLimit/params.GasLimitBoundDivisor - 1 /* strategy: gasLimit of block-to-mine is set based on parent's gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we increase it, otherwise lower it (or leave it unchanged if it's right at that usage) the amount increased/decreased depends on how far away from parentGasLimit * (2/3) parentGasUsed is. */ limit := parentGasLimit - decay + contrib if limit < params.MinGasLimit { limit = params.MinGasLimit } // If we're outside our allowed gas range, we try to hone towards them if limit < gasFloor { limit = parentGasLimit + decay if limit > gasFloor { limit = gasFloor } } else if limit > gasCeil { limit = parentGasLimit - decay if limit < gasCeil { limit = gasCeil } } return limit }