// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package discover import ( "bytes" "container/list" "context" "crypto/ecdsa" crand "crypto/rand" "errors" "fmt" "io" "net" "sync" "time" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/p2p/enode" "github.com/ledgerwatch/turbo-geth/p2p/enr" "github.com/ledgerwatch/turbo-geth/p2p/netutil" "github.com/ledgerwatch/turbo-geth/rlp" ) // Errors var ( errPacketTooSmall = errors.New("too small") errBadHash = errors.New("bad hash") errExpired = errors.New("expired") errUnsolicitedReply = errors.New("unsolicited reply") errUnknownNode = errors.New("unknown node") errTimeout = errors.New("RPC timeout") errClockWarp = errors.New("reply deadline too far in the future") errClosed = errors.New("socket closed") ) const ( respTimeout = 500 * time.Millisecond expiration = 20 * time.Second bondExpiration = 24 * time.Hour maxFindnodeFailures = 5 // nodes exceeding this limit are dropped ntpFailureThreshold = 32 // Continuous timeouts after which to check NTP ntpWarningCooldown = 10 * time.Minute // Minimum amount of time to pass before repeating NTP warning driftThreshold = 10 * time.Second // Allowed clock drift before warning user // Discovery packets are defined to be no larger than 1280 bytes. // Packets larger than this size will be cut at the end and treated // as invalid because their hash won't match. maxPacketSize = 1280 ) // RPC packet types const ( p_pingV4 = iota + 1 // zero is 'reserved' p_pongV4 p_findnodeV4 p_neighborsV4 p_enrRequestV4 p_enrResponseV4 ) // RPC request structures type ( pingV4 struct { senderKey *ecdsa.PublicKey // filled in by preverify Version uint From, To rpcEndpoint Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // pongV4 is the reply to pingV4. pongV4 struct { // This field should mirror the UDP envelope address // of the ping packet, which provides a way to discover the // the external address (after NAT). To rpcEndpoint ReplyTok []byte // This contains the hash of the ping packet. Expiration uint64 // Absolute timestamp at which the packet becomes invalid. // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // findnodeV4 is a query for nodes close to the given target. findnodeV4 struct { Target encPubkey Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // neighborsV4 is the reply to findnodeV4. neighborsV4 struct { Nodes []rpcNode Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // enrRequestV4 queries for the remote node's record. enrRequestV4 struct { Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // enrResponseV4 is the reply to enrRequestV4. enrResponseV4 struct { ReplyTok []byte // Hash of the enrRequest packet. Record enr.Record // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } rpcNode struct { IP net.IP // len 4 for IPv4 or 16 for IPv6 UDP uint16 // for discovery protocol TCP uint16 // for RLPx protocol ID encPubkey } rpcEndpoint struct { IP net.IP // len 4 for IPv4 or 16 for IPv6 UDP uint16 // for discovery protocol TCP uint16 // for RLPx protocol } ) // packetV4 is implemented by all v4 protocol messages. type packetV4 interface { // preverify checks whether the packet is valid and should be handled at all. preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error // handle handles the packet. handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) // packet name and type for logging purposes. name() string kind() byte } func makeEndpoint(addr *net.UDPAddr, tcpPort uint16) rpcEndpoint { ip := net.IP{} if ip4 := addr.IP.To4(); ip4 != nil { ip = ip4 } else if ip6 := addr.IP.To16(); ip6 != nil { ip = ip6 } return rpcEndpoint{IP: ip, UDP: uint16(addr.Port), TCP: tcpPort} } func (t *UDPv4) nodeFromRPC(sender *net.UDPAddr, rn rpcNode) (*node, error) { if rn.UDP <= 1024 { return nil, errors.New("low port") } if err := netutil.CheckRelayIP(sender.IP, rn.IP); err != nil { return nil, err } if t.netrestrict != nil && !t.netrestrict.Contains(rn.IP) { return nil, errors.New("not contained in netrestrict whitelist") } key, err := decodePubkey(rn.ID) if err != nil { return nil, err } n := wrapNode(enode.NewV4(key, rn.IP, int(rn.TCP), int(rn.UDP))) err = n.ValidateComplete() return n, err } func nodeToRPC(n *node) rpcNode { var key ecdsa.PublicKey var ekey encPubkey if err := n.Load((*enode.Secp256k1)(&key)); err == nil { ekey = encodePubkey(&key) } return rpcNode{ID: ekey, IP: n.IP(), UDP: uint16(n.UDP()), TCP: uint16(n.TCP())} } // UDPv4 implements the v4 wire protocol. type UDPv4 struct { conn UDPConn log log.Logger netrestrict *netutil.Netlist priv *ecdsa.PrivateKey localNode *enode.LocalNode db *enode.DB tab *Table closeOnce sync.Once wg sync.WaitGroup addReplyMatcher chan *replyMatcher gotreply chan reply closeCtx context.Context cancelCloseCtx func() } // replyMatcher represents a pending reply. // // Some implementations of the protocol wish to send more than one // reply packet to findnode. In general, any neighbors packet cannot // be matched up with a specific findnode packet. // // Our implementation handles this by storing a callback function for // each pending reply. Incoming packets from a node are dispatched // to all callback functions for that node. type replyMatcher struct { // these fields must match in the reply. from enode.ID ip net.IP ptype byte // time when the request must complete deadline time.Time // callback is called when a matching reply arrives. If it returns matched == true, the // reply was acceptable. The second return value indicates whether the callback should // be removed from the pending reply queue. If it returns false, the reply is considered // incomplete and the callback will be invoked again for the next matching reply. callback replyMatchFunc // errc receives nil when the callback indicates completion or an // error if no further reply is received within the timeout. errc chan error // reply contains the most recent reply. This field is safe for reading after errc has // received a value. reply packetV4 } type replyMatchFunc func(interface{}) (matched bool, requestDone bool) // reply is a reply packet from a certain node. type reply struct { from enode.ID ip net.IP data packetV4 // loop indicates whether there was // a matching request by sending on this channel. matched chan<- bool } func ListenV4(c UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv4, error) { closeCtx, cancel := context.WithCancel(context.Background()) t := &UDPv4{ conn: c, priv: cfg.PrivateKey, netrestrict: cfg.NetRestrict, localNode: ln, db: ln.Database(), gotreply: make(chan reply), addReplyMatcher: make(chan *replyMatcher), closeCtx: closeCtx, cancelCloseCtx: cancel, log: cfg.Log, } if t.log == nil { t.log = log.Root() } tab, err := newTable(t, ln.Database(), cfg.Bootnodes, t.log) if err != nil { return nil, err } t.tab = tab go tab.loop() t.wg.Add(2) go t.loop() go t.readLoop(cfg.Unhandled) return t, nil } // Self returns the local node. func (t *UDPv4) Self() *enode.Node { return t.localNode.Node() } // Close shuts down the socket and aborts any running queries. func (t *UDPv4) Close() { t.closeOnce.Do(func() { t.cancelCloseCtx() t.conn.Close() t.wg.Wait() t.tab.close() }) } // Resolve searches for a specific node with the given ID and tries to get the most recent // version of the node record for it. It returns n if the node could not be resolved. func (t *UDPv4) Resolve(n *enode.Node) *enode.Node { // Try asking directly. This works if the node is still responding on the endpoint we have. if rn, err := t.RequestENR(n); err == nil { return rn } // Check table for the ID, we might have a newer version there. if intable := t.tab.getNode(n.ID()); intable != nil && intable.Seq() > n.Seq() { n = intable if rn, err := t.RequestENR(n); err == nil { return rn } } // Otherwise perform a network lookup. var key enode.Secp256k1 if n.Load(&key) != nil { return n // no secp256k1 key } result := t.LookupPubkey((*ecdsa.PublicKey)(&key)) for _, rn := range result { if rn.ID() == n.ID() { if rn, err := t.RequestENR(rn); err == nil { return rn } } } return n } func (t *UDPv4) ourEndpoint() rpcEndpoint { n := t.Self() a := &net.UDPAddr{IP: n.IP(), Port: n.UDP()} return makeEndpoint(a, uint16(n.TCP())) } // Ping sends a ping message to the given node. func (t *UDPv4) Ping(n *enode.Node) error { _, err := t.ping(n) return err } // ping sends a ping message to the given node and waits for a reply. func (t *UDPv4) ping(n *enode.Node) (seq uint64, err error) { rm := t.sendPing(n.ID(), &net.UDPAddr{IP: n.IP(), Port: n.UDP()}, nil) if err = <-rm.errc; err == nil { seq = seqFromTail(rm.reply.(*pongV4).Rest) } return seq, err } // sendPing sends a ping message to the given node and invokes the callback // when the reply arrives. func (t *UDPv4) sendPing(toid enode.ID, toaddr *net.UDPAddr, callback func()) *replyMatcher { req := t.makePing(toaddr) packet, hash, err := t.encode(t.priv, req) if err != nil { errc := make(chan error, 1) errc <- err return &replyMatcher{errc: errc} } // Add a matcher for the reply to the pending reply queue. Pongs are matched if they // reference the ping we're about to send. rm := t.pending(toid, toaddr.IP, p_pongV4, func(p interface{}) (matched bool, requestDone bool) { matched = bytes.Equal(p.(*pongV4).ReplyTok, hash) if matched && callback != nil { callback() } return matched, matched }) // Send the packet. t.localNode.UDPContact(toaddr) t.write(toaddr, toid, req.name(), packet) return rm } func (t *UDPv4) makePing(toaddr *net.UDPAddr) *pingV4 { seq, _ := rlp.EncodeToBytes(t.localNode.Node().Seq()) return &pingV4{ Version: 4, From: t.ourEndpoint(), To: makeEndpoint(toaddr, 0), Expiration: uint64(time.Now().Add(expiration).Unix()), Rest: []rlp.RawValue{seq}, } } // LookupPubkey finds the closest nodes to the given public key. func (t *UDPv4) LookupPubkey(key *ecdsa.PublicKey) []*enode.Node { if t.tab.len() == 0 { // All nodes were dropped, refresh. The very first query will hit this // case and run the bootstrapping logic. <-t.tab.refresh() } return t.newLookup(t.closeCtx, encodePubkey(key)).run() } // RandomNodes is an iterator yielding nodes from a random walk of the DHT. func (t *UDPv4) RandomNodes() enode.Iterator { return newLookupIterator(t.closeCtx, t.newRandomLookup) } // lookupRandom implements transport. func (t *UDPv4) lookupRandom() []*enode.Node { return t.newRandomLookup(t.closeCtx).run() } // lookupSelf implements transport. func (t *UDPv4) lookupSelf() []*enode.Node { return t.newLookup(t.closeCtx, encodePubkey(&t.priv.PublicKey)).run() } func (t *UDPv4) newRandomLookup(ctx context.Context) *lookup { var target encPubkey crand.Read(target[:]) return t.newLookup(ctx, target) } func (t *UDPv4) newLookup(ctx context.Context, targetKey encPubkey) *lookup { target := enode.ID(crypto.Keccak256Hash(targetKey[:])) it := newLookup(ctx, t.tab, target, func(n *node) ([]*node, error) { return t.findnode(n.ID(), n.addr(), targetKey) }) return it } // findnode sends a findnode request to the given node and waits until // the node has sent up to k neighbors. func (t *UDPv4) findnode(toid enode.ID, toaddr *net.UDPAddr, target encPubkey) ([]*node, error) { t.ensureBond(toid, toaddr) // Add a matcher for 'neighbours' replies to the pending reply queue. The matcher is // active until enough nodes have been received. nodes := make([]*node, 0, bucketSize) nreceived := 0 rm := t.pending(toid, toaddr.IP, p_neighborsV4, func(r interface{}) (matched bool, requestDone bool) { reply := r.(*neighborsV4) for _, rn := range reply.Nodes { nreceived++ n, err := t.nodeFromRPC(toaddr, rn) if err != nil { t.log.Trace("Invalid neighbor node received", "ip", rn.IP, "addr", toaddr, "err", err) continue } nodes = append(nodes, n) } return true, nreceived >= bucketSize }) t.send(toaddr, toid, &findnodeV4{ Target: target, Expiration: uint64(time.Now().Add(expiration).Unix()), }) return nodes, <-rm.errc } // RequestENR sends enrRequest to the given node and waits for a response. func (t *UDPv4) RequestENR(n *enode.Node) (*enode.Node, error) { addr := &net.UDPAddr{IP: n.IP(), Port: n.UDP()} t.ensureBond(n.ID(), addr) req := &enrRequestV4{ Expiration: uint64(time.Now().Add(expiration).Unix()), } packet, hash, err := t.encode(t.priv, req) if err != nil { return nil, err } // Add a matcher for the reply to the pending reply queue. Responses are matched if // they reference the request we're about to send. rm := t.pending(n.ID(), addr.IP, p_enrResponseV4, func(r interface{}) (matched bool, requestDone bool) { matched = bytes.Equal(r.(*enrResponseV4).ReplyTok, hash) return matched, matched }) // Send the packet and wait for the reply. t.write(addr, n.ID(), req.name(), packet) if err := <-rm.errc; err != nil { return nil, err } // Verify the response record. respN, err := enode.New(enode.ValidSchemes, &rm.reply.(*enrResponseV4).Record) if err != nil { return nil, err } if respN.ID() != n.ID() { return nil, fmt.Errorf("invalid ID in response record") } if respN.Seq() < n.Seq() { return n, nil // response record is older } if err := netutil.CheckRelayIP(addr.IP, respN.IP()); err != nil { return nil, fmt.Errorf("invalid IP in response record: %v", err) } return respN, nil } // pending adds a reply matcher to the pending reply queue. // see the documentation of type replyMatcher for a detailed explanation. func (t *UDPv4) pending(id enode.ID, ip net.IP, ptype byte, callback replyMatchFunc) *replyMatcher { ch := make(chan error, 1) p := &replyMatcher{from: id, ip: ip, ptype: ptype, callback: callback, errc: ch} select { case t.addReplyMatcher <- p: // loop will handle it case <-t.closeCtx.Done(): ch <- errClosed } return p } // handleReply dispatches a reply packet, invoking reply matchers. It returns // whether any matcher considered the packet acceptable. func (t *UDPv4) handleReply(from enode.ID, fromIP net.IP, req packetV4) bool { matched := make(chan bool, 1) select { case t.gotreply <- reply{from, fromIP, req, matched}: // loop will handle it return <-matched case <-t.closeCtx.Done(): return false } } // loop runs in its own goroutine. it keeps track of // the refresh timer and the pending reply queue. func (t *UDPv4) loop() { defer t.wg.Done() var ( plist = list.New() timeout = time.NewTimer(0) nextTimeout *replyMatcher // head of plist when timeout was last reset contTimeouts = 0 // number of continuous timeouts to do NTP checks ntpWarnTime = time.Unix(0, 0) ) <-timeout.C // ignore first timeout defer timeout.Stop() resetTimeout := func() { if plist.Front() == nil || nextTimeout == plist.Front().Value { return } // Start the timer so it fires when the next pending reply has expired. now := time.Now() for el := plist.Front(); el != nil; el = el.Next() { nextTimeout = el.Value.(*replyMatcher) if dist := nextTimeout.deadline.Sub(now); dist < 2*respTimeout { timeout.Reset(dist) return } // Remove pending replies whose deadline is too far in the // future. These can occur if the system clock jumped // backwards after the deadline was assigned. nextTimeout.errc <- errClockWarp plist.Remove(el) } nextTimeout = nil timeout.Stop() } for { resetTimeout() select { case <-t.closeCtx.Done(): for el := plist.Front(); el != nil; el = el.Next() { el.Value.(*replyMatcher).errc <- errClosed } return case p := <-t.addReplyMatcher: p.deadline = time.Now().Add(respTimeout) plist.PushBack(p) case r := <-t.gotreply: var matched bool // whether any replyMatcher considered the reply acceptable. for el := plist.Front(); el != nil; el = el.Next() { p := el.Value.(*replyMatcher) if p.from == r.from && p.ptype == r.data.kind() && p.ip.Equal(r.ip) { ok, requestDone := p.callback(r.data) matched = matched || ok // Remove the matcher if callback indicates that all replies have been received. if requestDone { p.reply = r.data p.errc <- nil plist.Remove(el) } // Reset the continuous timeout counter (time drift detection) contTimeouts = 0 } } r.matched <- matched case now := <-timeout.C: nextTimeout = nil // Notify and remove callbacks whose deadline is in the past. for el := plist.Front(); el != nil; el = el.Next() { p := el.Value.(*replyMatcher) if now.After(p.deadline) || now.Equal(p.deadline) { p.errc <- errTimeout plist.Remove(el) contTimeouts++ } } // If we've accumulated too many timeouts, do an NTP time sync check if contTimeouts > ntpFailureThreshold { if time.Since(ntpWarnTime) >= ntpWarningCooldown { ntpWarnTime = time.Now() go checkClockDrift() } contTimeouts = 0 } } } } const ( macSize = 256 / 8 sigSize = 520 / 8 headSize = macSize + sigSize // space of packet frame data ) var ( headSpace = make([]byte, headSize) // Neighbors replies are sent across multiple packets to // stay below the packet size limit. We compute the maximum number // of entries by stuffing a packet until it grows too large. maxNeighbors int ) func init() { p := neighborsV4{Expiration: ^uint64(0)} maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)} for n := 0; ; n++ { p.Nodes = append(p.Nodes, maxSizeNode) size, _, err := rlp.EncodeToReader(p) if err != nil { // If this ever happens, it will be caught by the unit tests. panic("cannot encode: " + err.Error()) } if headSize+size+1 >= maxPacketSize { maxNeighbors = n break } } } func (t *UDPv4) send(toaddr *net.UDPAddr, toid enode.ID, req packetV4) ([]byte, error) { packet, hash, err := t.encode(t.priv, req) if err != nil { return hash, err } return hash, t.write(toaddr, toid, req.name(), packet) } func (t *UDPv4) write(toaddr *net.UDPAddr, toid enode.ID, what string, packet []byte) error { _, err := t.conn.WriteToUDP(packet, toaddr) t.log.Trace(">> "+what, "id", toid, "addr", toaddr, "err", err) return err } func (t *UDPv4) encode(priv *ecdsa.PrivateKey, req packetV4) (packet, hash []byte, err error) { name := req.name() b := new(bytes.Buffer) b.Write(headSpace) b.WriteByte(req.kind()) if err := rlp.Encode(b, req); err != nil { t.log.Error(fmt.Sprintf("Can't encode %s packet", name), "err", err) return nil, nil, err } packet = b.Bytes() sig, err := crypto.Sign(crypto.Keccak256(packet[headSize:]), priv) if err != nil { t.log.Error(fmt.Sprintf("Can't sign %s packet", name), "err", err) return nil, nil, err } copy(packet[macSize:], sig) // add the hash to the front. Note: this doesn't protect the // packet in any way. Our public key will be part of this hash in // The future. hash = crypto.Keccak256(packet[macSize:]) copy(packet, hash) return packet, hash, nil } // readLoop runs in its own goroutine. it handles incoming UDP packets. func (t *UDPv4) readLoop(unhandled chan<- ReadPacket) { defer t.wg.Done() if unhandled != nil { defer close(unhandled) } buf := make([]byte, maxPacketSize) for { nbytes, from, err := t.conn.ReadFromUDP(buf) if netutil.IsTemporaryError(err) { // Ignore temporary read errors. t.log.Debug("Temporary UDP read error", "err", err) continue } else if err != nil { // Shut down the loop for permament errors. if err != io.EOF { t.log.Debug("UDP read error", "err", err) } return } if t.handlePacket(from, buf[:nbytes]) != nil && unhandled != nil { select { case unhandled <- ReadPacket{buf[:nbytes], from}: default: } } } } func (t *UDPv4) handlePacket(from *net.UDPAddr, buf []byte) error { packet, fromKey, hash, err := decodeV4(buf) if err != nil { t.log.Debug("Bad discv4 packet", "addr", from, "err", err) return err } fromID := fromKey.id() if err == nil { err = packet.preverify(t, from, fromID, fromKey) } t.log.Trace("<< "+packet.name(), "id", fromID, "addr", from, "err", err) if err == nil { packet.handle(t, from, fromID, hash) } return err } func decodeV4(buf []byte) (packetV4, encPubkey, []byte, error) { if len(buf) < headSize+1 { return nil, encPubkey{}, nil, errPacketTooSmall } hash, sig, sigdata := buf[:macSize], buf[macSize:headSize], buf[headSize:] shouldhash := crypto.Keccak256(buf[macSize:]) if !bytes.Equal(hash, shouldhash) { return nil, encPubkey{}, nil, errBadHash } fromKey, err := recoverNodeKey(crypto.Keccak256(buf[headSize:]), sig) if err != nil { return nil, fromKey, hash, err } var req packetV4 switch ptype := sigdata[0]; ptype { case p_pingV4: req = new(pingV4) case p_pongV4: req = new(pongV4) case p_findnodeV4: req = new(findnodeV4) case p_neighborsV4: req = new(neighborsV4) case p_enrRequestV4: req = new(enrRequestV4) case p_enrResponseV4: req = new(enrResponseV4) default: return nil, fromKey, hash, fmt.Errorf("unknown type: %d", ptype) } s := rlp.NewStream(bytes.NewReader(sigdata[1:]), 0) err = s.Decode(req) return req, fromKey, hash, err } // checkBond checks if the given node has a recent enough endpoint proof. func (t *UDPv4) checkBond(id enode.ID, ip net.IP) bool { return time.Since(t.db.LastPongReceived(id, ip)) < bondExpiration } // ensureBond solicits a ping from a node if we haven't seen a ping from it for a while. // This ensures there is a valid endpoint proof on the remote end. func (t *UDPv4) ensureBond(toid enode.ID, toaddr *net.UDPAddr) { tooOld := time.Since(t.db.LastPingReceived(toid, toaddr.IP)) > bondExpiration if tooOld || t.db.FindFails(toid, toaddr.IP) > maxFindnodeFailures { rm := t.sendPing(toid, toaddr, nil) <-rm.errc // Wait for them to ping back and process our pong. time.Sleep(respTimeout) } } // expired checks whether the given UNIX time stamp is in the past. func expired(ts uint64) bool { return time.Unix(int64(ts), 0).Before(time.Now()) } func seqFromTail(tail []rlp.RawValue) uint64 { if len(tail) == 0 { return 0 } var seq uint64 rlp.DecodeBytes(tail[0], &seq) return seq } // PING/v4 func (req *pingV4) name() string { return "PING/v4" } func (req *pingV4) kind() byte { return p_pingV4 } func (req *pingV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error { if expired(req.Expiration) { return errExpired } key, err := decodePubkey(fromKey) if err != nil { return errors.New("invalid public key") } req.senderKey = key return nil } func (req *pingV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) { // Reply. seq, _ := rlp.EncodeToBytes(t.localNode.Node().Seq()) t.send(from, fromID, &pongV4{ To: makeEndpoint(from, req.From.TCP), ReplyTok: mac, Expiration: uint64(time.Now().Add(expiration).Unix()), Rest: []rlp.RawValue{seq}, }) // Ping back if our last pong on file is too far in the past. n := wrapNode(enode.NewV4(req.senderKey, from.IP, int(req.From.TCP), from.Port)) if time.Since(t.db.LastPongReceived(n.ID(), from.IP)) > bondExpiration { t.sendPing(fromID, from, func() { t.tab.addVerifiedNode(n) }) } else { t.tab.addVerifiedNode(n) } // Update node database and endpoint predictor. t.db.UpdateLastPingReceived(n.ID(), from.IP, time.Now()) t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)}) } // PONG/v4 func (req *pongV4) name() string { return "PONG/v4" } func (req *pongV4) kind() byte { return p_pongV4 } func (req *pongV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error { if expired(req.Expiration) { return errExpired } if !t.handleReply(fromID, from.IP, req) { return errUnsolicitedReply } return nil } func (req *pongV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) { t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)}) t.db.UpdateLastPongReceived(fromID, from.IP, time.Now()) } // FINDNODE/v4 func (req *findnodeV4) name() string { return "FINDNODE/v4" } func (req *findnodeV4) kind() byte { return p_findnodeV4 } func (req *findnodeV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error { if expired(req.Expiration) { return errExpired } if !t.checkBond(fromID, from.IP) { // No endpoint proof pong exists, we don't process the packet. This prevents an // attack vector where the discovery protocol could be used to amplify traffic in a // DDOS attack. A malicious actor would send a findnode request with the IP address // and UDP port of the target as the source address. The recipient of the findnode // packet would then send a neighbors packet (which is a much bigger packet than // findnode) to the victim. return errUnknownNode } return nil } func (req *findnodeV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) { // Determine closest nodes. target := enode.ID(crypto.Keccak256Hash(req.Target[:])) t.tab.mutex.Lock() closest := t.tab.closest(target, bucketSize, true).entries t.tab.mutex.Unlock() // Send neighbors in chunks with at most maxNeighbors per packet // to stay below the packet size limit. p := neighborsV4{Expiration: uint64(time.Now().Add(expiration).Unix())} var sent bool for _, n := range closest { if netutil.CheckRelayIP(from.IP, n.IP()) == nil { p.Nodes = append(p.Nodes, nodeToRPC(n)) } if len(p.Nodes) == maxNeighbors { t.send(from, fromID, &p) p.Nodes = p.Nodes[:0] sent = true } } if len(p.Nodes) > 0 || !sent { t.send(from, fromID, &p) } } // NEIGHBORS/v4 func (req *neighborsV4) name() string { return "NEIGHBORS/v4" } func (req *neighborsV4) kind() byte { return p_neighborsV4 } func (req *neighborsV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error { if expired(req.Expiration) { return errExpired } if !t.handleReply(fromID, from.IP, req) { return errUnsolicitedReply } return nil } func (req *neighborsV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) { } // ENRREQUEST/v4 func (req *enrRequestV4) name() string { return "ENRREQUEST/v4" } func (req *enrRequestV4) kind() byte { return p_enrRequestV4 } func (req *enrRequestV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error { if expired(req.Expiration) { return errExpired } if !t.checkBond(fromID, from.IP) { return errUnknownNode } return nil } func (req *enrRequestV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) { t.send(from, fromID, &enrResponseV4{ ReplyTok: mac, Record: *t.localNode.Node().Record(), }) } // ENRRESPONSE/v4 func (req *enrResponseV4) name() string { return "ENRRESPONSE/v4" } func (req *enrResponseV4) kind() byte { return p_enrResponseV4 } func (req *enrResponseV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error { if !t.handleReply(fromID, from.IP, req) { return errUnsolicitedReply } return nil } func (req *enrResponseV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) { }