// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "context" "encoding/binary" "encoding/json" "errors" "fmt" "math" "math/big" "sync" "sync/atomic" "time" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/consensus" "github.com/ledgerwatch/turbo-geth/core" "github.com/ledgerwatch/turbo-geth/core/forkid" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/core/types/accounts" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/eth/downloader" "github.com/ledgerwatch/turbo-geth/eth/fetcher" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/p2p" "github.com/ledgerwatch/turbo-geth/p2p/enode" "github.com/ledgerwatch/turbo-geth/params" "github.com/ledgerwatch/turbo-geth/rlp" "github.com/ledgerwatch/turbo-geth/trie" ) const ( softResponseLimit = 2 * 1024 * 1024 // Target maximum size of returned blocks, headers or node data. estHeaderRlpSize = 500 // Approximate size of an RLP encoded block header // txChanSize is the size of channel listening to NewTxsEvent. // The number is referenced from the size of tx pool. txChanSize = 4096 ) var ( syncChallengeTimeout = 15 * time.Second // Time allowance for a node to reply to the sync progress challenge ) func errResp(code errCode, format string, v ...interface{}) error { return fmt.Errorf("%v - %v", code, fmt.Sprintf(format, v...)) } type ProtocolManager struct { networkID uint64 forkFilter forkid.Filter // Fork ID filter, constant across the lifetime of the node fastSync uint32 // Flag whether fast sync is enabled (gets disabled if we already have blocks) acceptTxs uint32 // Flag whether we're considered synchronised (enables transaction processing) checkpointNumber uint64 // Block number for the sync progress validator to cross reference checkpointHash common.Hash // Block hash for the sync progress validator to cross reference txpool txPool blockchain *core.BlockChain maxPeers int downloader *downloader.Downloader blockFetcher *fetcher.BlockFetcher txFetcher *fetcher.TxFetcher peers *peerSet eventMux *event.TypeMux txsCh chan core.NewTxsEvent txsSub event.Subscription minedBlockSub *event.TypeMuxSubscription whitelist map[uint64]common.Hash // channels for fetcher, syncer, txsyncLoop newPeerCh chan *peer txsyncCh chan *txsync quitSync chan struct{} noMorePeers chan struct{} // wait group is used for graceful shutdowns during downloading // and processing wg sync.WaitGroup // Test fields or hooks broadcastTxAnnouncesOnly bool // Testing field, disable transaction propagation } // NewProtocolManager returns a new Ethereum sub protocol manager. The Ethereum sub protocol manages peers capable // with the Ethereum network. func NewProtocolManager(config *params.ChainConfig, checkpoint *params.TrustedCheckpoint, mode downloader.SyncMode, networkID uint64, mux *event.TypeMux, txpool txPool, engine consensus.Engine, blockchain *core.BlockChain, chaindb ethdb.Database, whitelist map[uint64]common.Hash) (*ProtocolManager, error) { // Create the protocol manager with the base fields manager := &ProtocolManager{ networkID: networkID, forkFilter: forkid.NewFilter(blockchain), eventMux: mux, txpool: txpool, blockchain: blockchain, peers: newPeerSet(), whitelist: whitelist, newPeerCh: make(chan *peer), noMorePeers: make(chan struct{}), txsyncCh: make(chan *txsync), quitSync: make(chan struct{}), } if mode == downloader.FullSync { // The database seems empty as the current block is the genesis. Yet the fast // block is ahead, so fast sync was enabled for this node at a certain point. // The scenarios where this can happen is // * if the user manually (or via a bad block) rolled back a fast sync node // below the sync point. // * the last fast sync is not finished while user specifies a full sync this // time. But we don't have any recent state for full sync. // In these cases however it's safe to reenable fast sync. fullBlock, fastBlock := blockchain.CurrentBlock(), blockchain.CurrentFastBlock() if fullBlock.NumberU64() == 0 && fastBlock.NumberU64() > 0 { manager.fastSync = uint32(1) log.Warn("Switch sync mode from full sync to fast sync") } } else { if blockchain.CurrentBlock().NumberU64() > 0 { // Print warning log if database is not empty to run fast sync. log.Warn("Switch sync mode from fast sync to full sync") } else { // If fast sync was requested and our database is empty, grant it manager.fastSync = uint32(1) } } // If we have trusted checkpoints, enforce them on the chain if checkpoint != nil { manager.checkpointNumber = (checkpoint.SectionIndex+1)*params.CHTFrequency - 1 manager.checkpointHash = checkpoint.SectionHead } // Construct the different synchronisation mechanisms manager.downloader = downloader.New(manager.checkpointNumber, chaindb, nil /*stateBloom */, manager.eventMux, blockchain, nil, manager.removePeer) // Construct the fetcher (short sync) validator := func(header *types.Header) error { return engine.VerifyHeader(blockchain, header, true) } heighter := func() uint64 { return blockchain.CurrentBlock().NumberU64() } inserter := func(blocks types.Blocks) (int, error) { // If sync hasn't reached the checkpoint yet, deny importing weird blocks. // // Ideally we would also compare the head block's timestamp and similarly reject // the propagated block if the head is too old. Unfortunately there is a corner // case when starting new networks, where the genesis might be ancient (0 unix) // which would prevent full nodes from accepting it. if manager.blockchain.CurrentBlock().NumberU64() < manager.checkpointNumber { log.Warn("Unsynced yet, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash()) return 0, nil } // If fast sync is running, deny importing weird blocks. This is a problematic // clause when starting up a new network, because fast-syncing miners might not // accept each others' blocks until a restart. Unfortunately we haven't figured // out a way yet where nodes can decide unilaterally whether the network is new // or not. This should be fixed if we figure out a solution. if atomic.LoadUint32(&manager.fastSync) == 1 { log.Warn("Fast syncing, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash()) return 0, nil } n, err := manager.blockchain.InsertChain(context.Background(), blocks) if err == nil { atomic.StoreUint32(&manager.acceptTxs, 1) // Mark initial sync done on any fetcher import } return n, err } manager.blockFetcher = fetcher.NewBlockFetcher(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer) fetchTx := func(peer string, hashes []common.Hash) error { p := manager.peers.Peer(peer) if p == nil { return errors.New("unknown peer") } return p.RequestTxs(hashes) } manager.txFetcher = fetcher.NewTxFetcher(txpool.Has, txpool.AddRemotes, fetchTx) return manager, nil } func (pm *ProtocolManager) makeFirehoseProtocol() p2p.Protocol { // Initiate Firehose log.Info("Initialising Firehose protocol", "versions", FirehoseVersions) return p2p.Protocol{ Name: FirehoseName, Version: FirehoseVersions[0], Length: FirehoseLengths[0], Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error { peer := &firehosePeer{Peer: p, rw: rw} select { case <-pm.quitSync: return p2p.DiscQuitting default: pm.wg.Add(1) defer pm.wg.Done() return pm.handleFirehose(peer) } }, NodeInfo: func() interface{} { return pm.NodeInfo() }, PeerInfo: func(id enode.ID) interface{} { if p := pm.peers.Peer(fmt.Sprintf("%x", id[:8])); p != nil { return p.Info() } return nil }, } } func (pm *ProtocolManager) makeProtocol(version uint) p2p.Protocol { length, ok := ProtocolLengths[version] if !ok { panic("makeProtocol for unknown version") } return p2p.Protocol{ Name: ProtocolName, Version: version, Length: length, Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error { peer := pm.newPeer(int(version), p, rw, pm.txpool.Get) select { case pm.newPeerCh <- peer: pm.wg.Add(1) defer pm.wg.Done() return pm.handle(peer) case <-pm.quitSync: return p2p.DiscQuitting } }, NodeInfo: func() interface{} { return pm.NodeInfo() }, PeerInfo: func(id enode.ID) interface{} { if p := pm.peers.Peer(fmt.Sprintf("%x", id[:8])); p != nil { return p.Info() } return nil }, } } func (pm *ProtocolManager) removePeer(id string) { // Short circuit if the peer was already removed peer := pm.peers.Peer(id) if peer == nil { return } log.Debug("Removing Ethereum peer", "peer", id) // Unregister the peer from the downloader and Ethereum peer set pm.downloader.UnregisterPeer(id) pm.txFetcher.Drop(id) // nolint:errcheck if err := pm.peers.Unregister(id); err != nil { log.Error("Peer removal failed", "peer", id, "err", err) } // Hard disconnect at the networking layer if peer != nil { peer.Peer.Disconnect(p2p.DiscUselessPeer) } } func (pm *ProtocolManager) Start(maxPeers int) { pm.maxPeers = maxPeers // broadcast transactions pm.txsCh = make(chan core.NewTxsEvent, txChanSize) pm.txsSub = pm.txpool.SubscribeNewTxsEvent(pm.txsCh) go pm.txBroadcastLoop() // broadcast mined blocks pm.minedBlockSub = pm.eventMux.Subscribe(core.NewMinedBlockEvent{}) go pm.minedBroadcastLoop() // start sync handlers go pm.syncer() go pm.txsyncLoop64() // TODO(karalabe): Legacy initial tx echange, drop with eth/64. } func (pm *ProtocolManager) Stop() { log.Info("Stopping Ethereum protocol") pm.txsSub.Unsubscribe() // quits txBroadcastLoop pm.minedBlockSub.Unsubscribe() // quits blockBroadcastLoop // Quit the sync loop. // After this send has completed, no new peers will be accepted. pm.noMorePeers <- struct{}{} // Quit fetcher, txsyncLoop. close(pm.quitSync) // Disconnect existing sessions. // This also closes the gate for any new registrations on the peer set. // sessions which are already established but not added to pm.peers yet // will exit when they try to register. pm.peers.Close() // Wait for all peer handler goroutines and the loops to come down. pm.wg.Wait() log.Info("Ethereum protocol stopped") } func (pm *ProtocolManager) newPeer(pv int, p *p2p.Peer, rw p2p.MsgReadWriter, getPooledTx func(hash common.Hash) *types.Transaction) *peer { return newPeer(pv, p, rw, getPooledTx) } // handle is the callback invoked to manage the life cycle of an eth peer. When // this function terminates, the peer is disconnected. func (pm *ProtocolManager) handle(p *peer) error { // Ignore maxPeers if this is a trusted peer if pm.peers.Len() >= pm.maxPeers && !p.Peer.Info().Network.Trusted { return p2p.DiscTooManyPeers } p.Log().Debug("Ethereum peer connected", "name", p.Name()) // Execute the Ethereum handshake var ( genesis = pm.blockchain.Genesis() head = pm.blockchain.CurrentHeader() hash = head.Hash() number = head.Number.Uint64() td = pm.blockchain.GetTd(hash, number) ) if err := p.Handshake(pm.networkID, td, hash, genesis.Hash(), forkid.NewID(pm.blockchain), pm.forkFilter); err != nil { p.Log().Debug("Ethereum handshake failed", "err", err) return err } // Register the peer locally if err := pm.peers.Register(p); err != nil { p.Log().Error("Ethereum peer registration failed", "err", err) return err } defer pm.removePeer(p.id) // Register the peer in the downloader. If the downloader considers it banned, we disconnect if err := pm.downloader.RegisterPeer(p.id, p.version, p); err != nil { return err } // Propagate existing transactions. new transactions appearing // after this will be sent via broadcasts. pm.syncTransactions(p) // If we have a trusted CHT, reject all peers below that (avoid fast sync eclipse) if pm.checkpointHash != (common.Hash{}) { // Request the peer's checkpoint header for chain height/weight validation if err := p.RequestHeadersByNumber(pm.checkpointNumber, 1, 0, false); err != nil { return err } // Start a timer to disconnect if the peer doesn't reply in time p.syncDrop = time.AfterFunc(syncChallengeTimeout, func() { p.Log().Warn("Checkpoint challenge timed out, dropping", "addr", p.RemoteAddr(), "type", p.Name()) pm.removePeer(p.id) }) // Make sure it's cleaned up if the peer dies off defer func() { if p.syncDrop != nil { p.syncDrop.Stop() p.syncDrop = nil } }() } // If we have any explicit whitelist block hashes, request them for number := range pm.whitelist { if err := p.RequestHeadersByNumber(number, 1, 0, false); err != nil { return err } } // Handle incoming messages until the connection is torn down for { if err := pm.handleMsg(p); err != nil { p.Log().Debug("Ethereum message handling failed", "err", err) return err } } } func (pm *ProtocolManager) handleFirehose(p *firehosePeer) error { for { if err := pm.handleFirehoseMsg(p); err != nil { p.Log().Debug("Firehose message handling failed", "err", err) return err } } } // handleMsg is invoked whenever an inbound message is received from a remote // peer. The remote connection is torn down upon returning any error. func (pm *ProtocolManager) handleMsg(p *peer) error { // Read the next message from the remote peer, and ensure it's fully consumed msg, err := p.rw.ReadMsg() if err != nil { return err } if msg.Size > ProtocolMaxMsgSize { return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize) } defer msg.Discard() // Handle the message depending on its contents switch { case msg.Code == StatusMsg: // Status messages should never arrive after the handshake return errResp(ErrExtraStatusMsg, "uncontrolled status message") // Block header query, collect the requested headers and reply case msg.Code == GetBlockHeadersMsg: // Decode the complex header query var query getBlockHeadersData if err := msg.Decode(&query); err != nil { return errResp(ErrDecode, "%v: %v", msg, err) } hashMode := query.Origin.Hash != (common.Hash{}) first := true maxNonCanonical := uint64(100) // Gather headers until the fetch or network limits is reached var ( bytes common.StorageSize headers []*types.Header unknown bool ) for !unknown && len(headers) < int(query.Amount) && bytes < softResponseLimit && len(headers) < downloader.MaxHeaderFetch { // Retrieve the next header satisfying the query var origin *types.Header if hashMode { if first { first = false origin = pm.blockchain.GetHeaderByHash(query.Origin.Hash) if origin != nil { query.Origin.Number = origin.Number.Uint64() } } else { origin = pm.blockchain.GetHeader(query.Origin.Hash, query.Origin.Number) } } else { origin = pm.blockchain.GetHeaderByNumber(query.Origin.Number) } if origin == nil { break } headers = append(headers, origin) bytes += estHeaderRlpSize // Advance to the next header of the query switch { case hashMode && query.Reverse: // Hash based traversal towards the genesis block ancestor := query.Skip + 1 if ancestor == 0 { unknown = true } else { query.Origin.Hash, query.Origin.Number = pm.blockchain.GetAncestor(query.Origin.Hash, query.Origin.Number, ancestor, &maxNonCanonical) unknown = (query.Origin.Hash == common.Hash{}) } case hashMode && !query.Reverse: // Hash based traversal towards the leaf block var ( current = origin.Number.Uint64() next = current + query.Skip + 1 ) if next <= current { infos, _ := json.MarshalIndent(p.Peer.Info(), "", " ") p.Log().Warn("GetBlockHeaders skip overflow attack", "current", current, "skip", query.Skip, "next", next, "attacker", infos) unknown = true } else { if header := pm.blockchain.GetHeaderByNumber(next); header != nil { nextHash := header.Hash() expOldHash, _ := pm.blockchain.GetAncestor(nextHash, next, query.Skip+1, &maxNonCanonical) if expOldHash == query.Origin.Hash { query.Origin.Hash, query.Origin.Number = nextHash, next } else { unknown = true } } else { unknown = true } } case query.Reverse: // Number based traversal towards the genesis block if query.Origin.Number >= query.Skip+1 { query.Origin.Number -= query.Skip + 1 } else { unknown = true } case !query.Reverse: // Number based traversal towards the leaf block query.Origin.Number += query.Skip + 1 } } return p.SendBlockHeaders(headers) case msg.Code == BlockHeadersMsg: // A batch of headers arrived to one of our previous requests var headers []*types.Header if err := msg.Decode(&headers); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // If no headers were received, but we're expencting a checkpoint header, consider it that if len(headers) == 0 && p.syncDrop != nil { // Stop the timer either way, decide later to drop or not p.syncDrop.Stop() p.syncDrop = nil // If we're doing a fast sync, we must enforce the checkpoint block to avoid // eclipse attacks. Unsynced nodes are welcome to connect after we're done // joining the network if atomic.LoadUint32(&pm.fastSync) == 1 { p.Log().Warn("Dropping unsynced node during fast sync", "addr", p.RemoteAddr(), "type", p.Name()) return errors.New("unsynced node cannot serve fast sync") } } // Filter out any explicitly requested headers, deliver the rest to the downloader filter := len(headers) == 1 if filter { // If it's a potential sync progress check, validate the content and advertised chain weight if p.syncDrop != nil && headers[0].Number.Uint64() == pm.checkpointNumber { // Disable the sync drop timer p.syncDrop.Stop() p.syncDrop = nil // Validate the header and either drop the peer or continue if headers[0].Hash() != pm.checkpointHash { return errors.New("checkpoint hash mismatch") } return nil } // Otherwise if it's a whitelisted block, validate against the set if want, ok := pm.whitelist[headers[0].Number.Uint64()]; ok { if hash := headers[0].Hash(); want != hash { p.Log().Info("Whitelist mismatch, dropping peer", "number", headers[0].Number.Uint64(), "hash", hash, "want", want) return errors.New("whitelist block mismatch") } p.Log().Debug("Whitelist block verified", "number", headers[0].Number.Uint64(), "hash", want) } // Irrelevant of the fork checks, send the header to the fetcher just in case headers = pm.blockFetcher.FilterHeaders(p.id, headers, time.Now()) } if len(headers) > 0 || !filter { err := pm.downloader.DeliverHeaders(p.id, headers) if err != nil { log.Debug("Failed to deliver headers", "err", err) } } case msg.Code == GetBlockBodiesMsg: // Decode the retrieval message msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) if _, err := msgStream.List(); err != nil { return err } // Gather blocks until the fetch or network limits is reached var ( hash common.Hash bytes int bodies []rlp.RawValue ) for bytes < softResponseLimit && len(bodies) < downloader.MaxBlockFetch { // Retrieve the hash of the next block if err := msgStream.Decode(&hash); err == rlp.EOL { break } else if err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // Retrieve the requested block body, stopping if enough was found if body := pm.blockchain.GetBody(hash); body != nil { smallBody := &blockBody{Transactions: body.Transactions, Uncles: body.Uncles} if data, err := rlp.EncodeToBytes(smallBody); err == nil { bodies = append(bodies, data) bytes += len(data) } else { return err } } } return p.SendBlockBodiesRLP(bodies) case msg.Code == BlockBodiesMsg: // A batch of block bodies arrived to one of our previous requests var request blockBodiesData if err := msg.Decode(&request); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // Deliver them all to the downloader for queuing transactions := make([][]*types.Transaction, len(request)) uncles := make([][]*types.Header, len(request)) for i, body := range request { transactions[i] = body.Transactions uncles[i] = body.Uncles } // Filter out any explicitly requested bodies, deliver the rest to the downloader filter := len(transactions) > 0 || len(uncles) > 0 if filter { transactions, uncles = pm.blockFetcher.FilterBodies(p.id, transactions, uncles, time.Now()) } if len(transactions) > 0 || len(uncles) > 0 || !filter { err := pm.downloader.DeliverBodies(p.id, transactions, uncles) if err != nil { log.Debug("Failed to deliver bodies", "err", err) } } case p.version >= eth63 && msg.Code == GetNodeDataMsg: // Decode the retrieval message msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) if _, err := msgStream.List(); err != nil { return err } // Obtain the TrieDbState tds, err := pm.blockchain.GetTrieDbState() if err != nil { return err } // Gather state data until the fetch or network limits is reached var ( hash common.Hash bytes int data [][]byte ) for bytes < softResponseLimit && len(data) < downloader.MaxStateFetch { // Retrieve the hash of the next node if err := msgStream.Decode(&hash); err == rlp.EOL { break } else if err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // First try to get the trie node node := tds.GetNodeByHash(hash) if len(node) != 0 { data = append(data, node) bytes += len(node) continue } // Now attempt to get the byte code var zeroAddress common.Address code, err := tds.ReadAccountCode(zeroAddress, hash) if err == nil { data = append(data, code) bytes += len(code) } else { data = append(data, nil) } } return p.SendNodeData(data) case p.version >= eth63 && msg.Code == GetReceiptsMsg: // Decode the retrieval message msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) if _, err := msgStream.List(); err != nil { return err } // Gather state data until the fetch or network limits is reached var ( hash common.Hash bytes int receipts []rlp.RawValue ) for bytes < softResponseLimit && len(receipts) < downloader.MaxReceiptFetch { // Retrieve the hash of the next block if err := msgStream.Decode(&hash); err == rlp.EOL { break } else if err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // Retrieve the requested block's receipts, skipping if unknown to us results := pm.blockchain.GetReceiptsByHash(hash) if results == nil { if header := pm.blockchain.GetHeaderByHash(hash); header == nil || header.ReceiptHash != types.EmptyRootHash { continue } } // If known, encode and queue for response packet if encoded, err := rlp.EncodeToBytes(results); err != nil { log.Error("Failed to encode receipt", "err", err) } else { receipts = append(receipts, encoded) bytes += len(encoded) } } return p.SendReceiptsRLP(receipts) case p.version >= eth63 && msg.Code == ReceiptsMsg: // A batch of receipts arrived to one of our previous requests var receipts [][]*types.Receipt if err := msg.Decode(&receipts); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // Deliver all to the downloader if err := pm.downloader.DeliverReceipts(p.id, receipts); err != nil { log.Debug("Failed to deliver receipts", "err", err) } case msg.Code == NewBlockHashesMsg: var announces newBlockHashesData if err := msg.Decode(&announces); err != nil { return errResp(ErrDecode, "%v: %v", msg, err) } // Mark the hashes as present at the remote node for _, block := range announces { p.MarkBlock(block.Hash) } // Schedule all the unknown hashes for retrieval unknown := make(newBlockHashesData, 0, len(announces)) for _, block := range announces { if !pm.blockchain.HasBlock(block.Hash, block.Number) { unknown = append(unknown, block) } } for _, block := range unknown { pm.blockFetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies) //nolint:errcheck } case msg.Code == NewBlockMsg: // Retrieve and decode the propagated block var request newBlockData if err := msg.Decode(&request); err != nil { return errResp(ErrDecode, "%v: %v", msg, err) } if hash := types.CalcUncleHash(request.Block.Uncles()); hash != request.Block.UncleHash() { log.Warn("Propagated block has invalid uncles", "have", hash, "exp", request.Block.UncleHash()) break // TODO(karalabe): return error eventually, but wait a few releases } if hash := types.DeriveSha(request.Block.Transactions()); hash != request.Block.TxHash() { log.Warn("Propagated block has invalid body", "have", hash, "exp", request.Block.TxHash()) break // TODO(karalabe): return error eventually, but wait a few releases } if err := request.sanityCheck(); err != nil { return err } request.Block.ReceivedAt = msg.ReceivedAt request.Block.ReceivedFrom = p // Mark the peer as owning the block and schedule it for import p.MarkBlock(request.Block.Hash()) if err := pm.blockFetcher.Enqueue(p.id, request.Block); err != nil { return err } // Assuming the block is importable by the peer, but possibly not yet done so, // calculate the head hash and TD that the peer truly must have. var ( trueHead = request.Block.ParentHash() trueTD = new(big.Int).Sub(request.TD, request.Block.Difficulty()) ) // Update the peer's total difficulty if better than the previous if _, td := p.Head(); trueTD.Cmp(td) > 0 { p.SetHead(trueHead, trueTD) // Schedule a sync if above ours. Note, this will not fire a sync for a gap of // a single block (as the true TD is below the propagated block), however this // scenario should easily be covered by the fetcher. currentBlock := pm.blockchain.CurrentBlock() if trueTD.Cmp(pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64())) > 0 { go pm.synchronise(p) } } case msg.Code == NewPooledTransactionHashesMsg && p.version >= eth65: // New transaction announcement arrived, make sure we have // a valid and fresh chain to handle them if atomic.LoadUint32(&pm.acceptTxs) == 0 { break } var hashes []common.Hash if err := msg.Decode(&hashes); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // Schedule all the unknown hashes for retrieval for _, hash := range hashes { p.MarkTransaction(hash) } pm.txFetcher.Notify(p.id, hashes) // nolint:errcheck case msg.Code == GetPooledTransactionsMsg && p.version >= eth65: // Decode the retrieval message msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) if _, err := msgStream.List(); err != nil { return err } // Gather transactions until the fetch or network limits is reached var ( hash common.Hash bytes int hashes []common.Hash txs []rlp.RawValue ) for bytes < softResponseLimit { // Retrieve the hash of the next block if err := msgStream.Decode(&hash); err == rlp.EOL { break } else if err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } // Retrieve the requested transaction, skipping if unknown to us tx := pm.txpool.Get(hash) if tx == nil { continue } // If known, encode and queue for response packet if encoded, err := rlp.EncodeToBytes(tx); err != nil { log.Error("Failed to encode transaction", "err", err) } else { hashes = append(hashes, hash) txs = append(txs, encoded) bytes += len(encoded) } } return p.SendPooledTransactionsRLP(hashes, txs) case msg.Code == TransactionMsg || (msg.Code == PooledTransactionsMsg && p.version >= eth65): // Transactions arrived, make sure we have a valid and fresh chain to handle them if atomic.LoadUint32(&pm.acceptTxs) == 0 { break } // Transactions can be processed, parse all of them and deliver to the pool var txs []*types.Transaction if err := msg.Decode(&txs); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } for i, tx := range txs { // Validate and mark the remote transaction if tx == nil { return errResp(ErrDecode, "transaction %d is nil", i) } p.MarkTransaction(tx.Hash()) } pm.txFetcher.Enqueue(p.id, txs, msg.Code == PooledTransactionsMsg) // nolint:errcheck default: return errResp(ErrInvalidMsgCode, "%v", msg.Code) } return nil } func (pm *ProtocolManager) extractAddressHash(addressOrHash []byte) (common.Hash, error) { var addrHash common.Hash if len(addressOrHash) == common.HashLength { addrHash.SetBytes(addressOrHash) return addrHash, nil } else if len(addressOrHash) == common.AddressLength { addrHash = crypto.Keccak256Hash(addressOrHash) return addrHash, nil } else { return addrHash, errResp(ErrDecode, "not an account address or its hash") } } func (pm *ProtocolManager) handleFirehoseMsg(p *firehosePeer) error { msg, readErr := p.rw.ReadMsg() if readErr != nil { return readErr } if msg.Size > FirehoseMaxMsgSize { return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, FirehoseMaxMsgSize) } defer msg.Discard() switch msg.Code { case GetStateRangesCode: msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) var request getStateRangesOrNodes if err := msgStream.Decode(&request); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } n := len(request.Prefixes) var response stateRangesMsg response.ID = request.ID response.Entries = make([]firehoseAccountRange, n) for i := 0; i < n; i++ { response.Entries[i].Status = NoData } block := pm.blockchain.GetBlockByHash(request.Block) if block != nil { _, dbstate, err := pm.blockchain.StateAt(block.Root(), block.NumberU64()) if err != nil { return err } for i, responseSize := 0, 0; i < n && responseSize < softResponseLimit; i++ { var leaves []accountLeaf allTraversed, err := dbstate.WalkRangeOfAccounts(request.Prefixes[i], MaxLeavesPerPrefix, func(key common.Hash, value *accounts.Account) { leaves = append(leaves, accountLeaf{key, value}) }, ) if err != nil { return err } if allTraversed { response.Entries[i].Status = OK response.Entries[i].Leaves = leaves responseSize += len(leaves) } else { response.Entries[i].Status = TooManyLeaves } } } else { response.AvailableBlocks = pm.blockchain.AvailableBlocks() } return p2p.Send(p.rw, StateRangesCode, response) case StateRangesCode: return errResp(ErrNotImplemented, "Not implemented yet") case GetStorageRangesCode: msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) var request getStorageRangesOrNodes if err := msgStream.Decode(&request); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } numReq := len(request.Requests) var response storageRangesMsg response.ID = request.ID response.Entries = make([][]storageRange, numReq) block := pm.blockchain.GetBlockByHash(request.Block) if block != nil { _, dbstate, err := pm.blockchain.StateAt(block.Root(), block.NumberU64()) if err != nil { return err } for j, responseSize := 0, 0; j < numReq; j++ { req := request.Requests[j] n := len(req.Prefixes) response.Entries[j] = make([]storageRange, n) for i := 0; i < n; i++ { response.Entries[j][i].Status = NoData } addrHash, err := pm.extractAddressHash(req.Account) if err != nil { return err } for i := 0; i < n && responseSize < softResponseLimit; i++ { var leaves []storageLeaf allTraversed, err := dbstate.WalkStorageRange(addrHash, req.Prefixes[i], MaxLeavesPerPrefix, func(key common.Hash, value big.Int) { leaves = append(leaves, storageLeaf{key, value}) }, ) if err != nil { return err } if allTraversed { response.Entries[j][i].Status = OK response.Entries[j][i].Leaves = leaves responseSize += len(leaves) } else { response.Entries[j][i].Status = TooManyLeaves } } } } else { response.AvailableBlocks = pm.blockchain.AvailableBlocks() } return p2p.Send(p.rw, StorageRangesCode, response) case StorageRangesCode: return errResp(ErrNotImplemented, "Not implemented yet") case GetStateNodesCode: msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) var request getStateRangesOrNodes if err := msgStream.Decode(&request); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } n := len(request.Prefixes) var response stateNodesMsg response.ID = request.ID response.Nodes = make([][]byte, n) block := pm.blockchain.GetBlockByHash(request.Block) if block != nil { tr := trie.New(common.Hash{}) for i, responseSize := 0, 0; i < n && responseSize < softResponseLimit; i++ { prefix := request.Prefixes[i] rr := tr.NewResolveRequest(nil, prefix.ToHex(), prefix.Nibbles(), nil) rr.RequiresRLP = true resolver := trie.NewResolver(0, true, block.NumberU64()) resolver.SetHistorical(true) resolver.AddRequest(rr) if err2 := resolver.ResolveWithDb(pm.blockchain.ChainDb(), block.NumberU64()); err2 != nil { return err2 } node := rr.NodeRLP response.Nodes[i] = make([]byte, len(node)) copy(response.Nodes[i], node) responseSize += len(node) } } else { response.AvailableBlocks = pm.blockchain.AvailableBlocks() } return p2p.Send(p.rw, StateNodesCode, response) case StateNodesCode: return errResp(ErrNotImplemented, "Not implemented yet") case GetStorageNodesCode: msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) var request getStorageRangesOrNodes if err := msgStream.Decode(&request); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } numReq := len(request.Requests) var response storageNodesMsg response.ID = request.ID response.Nodes = make([][][]byte, numReq) block := pm.blockchain.GetBlockByHash(request.Block) if block != nil { for j, responseSize := 0, 0; j < numReq; j++ { req := request.Requests[j] n := len(req.Prefixes) response.Nodes[j] = make([][]byte, n) addrHash, err := pm.extractAddressHash(req.Account) if err != nil { return err } tr := trie.New(common.Hash{}) for i := 0; i < n && responseSize < softResponseLimit; i++ { contractPrefix := make([]byte, common.HashLength+common.IncarnationLength) copy(contractPrefix, addrHash.Bytes()) binary.BigEndian.PutUint64(contractPrefix[common.HashLength:], ^uint64(1)) // TODO [Issue 99] support incarnations storagePrefix := req.Prefixes[i] rr := tr.NewResolveRequest(contractPrefix, storagePrefix.ToHex(), storagePrefix.Nibbles(), nil) rr.RequiresRLP = true resolver := trie.NewResolver(0, false, block.NumberU64()) resolver.SetHistorical(true) resolver.AddRequest(rr) if err2 := resolver.ResolveWithDb(pm.blockchain.ChainDb(), block.NumberU64()); err2 != nil { return err2 } node := rr.NodeRLP response.Nodes[j][i] = make([]byte, len(node)) copy(response.Nodes[j][i], node) responseSize += len(node) } } } else { response.AvailableBlocks = pm.blockchain.AvailableBlocks() } return p2p.Send(p.rw, StorageNodesCode, response) case StorageNodesCode: return errResp(ErrNotImplemented, "Not implemented yet") case GetBytecodeCode: // Decode the retrieval message msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size)) if _, err := msgStream.List(); err != nil { return err } var reqID uint64 if err := msgStream.Decode(&reqID); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } if _, err := msgStream.List(); err != nil { return err } // Gather bytecodes until the fetch or network limit is reached var ( responseSize int code [][]byte ) for responseSize < softResponseLimit && len(code) < downloader.MaxStateFetch { var req bytecodeRef if err := msgStream.Decode(&req); err == rlp.EOL { break } else if err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } var addr common.Address if len(req.Account) == common.AddressLength { addr.SetBytes(req.Account) } else if len(req.Account) == common.HashLength { var preimageErr error addr, preimageErr = pm.blockchain.GetAddressFromItsHash(common.BytesToHash(req.Account)) if preimageErr == core.ErrNotFound { code = append(code, []byte{}) break } else if preimageErr != nil { return preimageErr } } else { return errResp(ErrDecode, "not an account address or its hash") } // Retrieve requested byte code, stopping if enough was found if entry, err := pm.blockchain.ByteCode(addr); err == nil { code = append(code, entry) responseSize += len(entry) } } return p.SendByteCode(reqID, code) case BytecodeCode: return errResp(ErrNotImplemented, "Not implemented yet") case GetStorageSizesCode: return errResp(ErrNotImplemented, "Not implemented yet") case StorageSizesCode: return errResp(ErrNotImplemented, "Not implemented yet") default: return errResp(ErrInvalidMsgCode, "%v", msg.Code) } } // BroadcastBlock will either propagate a block to a subset of its peers, or // will only announce its availability (depending what's requested). func (pm *ProtocolManager) BroadcastBlock(block *types.Block, propagate bool) { hash := block.Hash() peers := pm.peers.PeersWithoutBlock(hash) // If propagation is requested, send to a subset of the peer if propagate { // Calculate the TD of the block (it's not imported yet, so block.Td is not valid) var td *big.Int if parent := pm.blockchain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent != nil { td = new(big.Int).Add(block.Difficulty(), pm.blockchain.GetTd(block.ParentHash(), block.NumberU64()-1)) } else { log.Error("Propagating dangling block", "number", block.Number(), "hash", hash) return } // Send the block to a subset of our peers transfer := peers[:int(math.Sqrt(float64(len(peers))))] for _, peer := range transfer { peer.AsyncSendNewBlock(block, td) } log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt))) return } // Otherwise if the block is indeed in out own chain, announce it if pm.blockchain.HasBlock(hash, block.NumberU64()) { for _, peer := range peers { peer.AsyncSendNewBlockHash(block) } log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt))) } } // BroadcastTransactions will propagate a batch of transactions to all peers which are not known to // already have the given transaction. func (pm *ProtocolManager) BroadcastTransactions(txs types.Transactions, propagate bool) { var ( txset = make(map[*peer][]common.Hash) annos = make(map[*peer][]common.Hash) ) // Broadcast transactions to a batch of peers not knowing about it if propagate { for _, tx := range txs { peers := pm.peers.PeersWithoutTx(tx.Hash()) // Send the block to a subset of our peers transfer := peers[:int(math.Sqrt(float64(len(peers))))] for _, peer := range transfer { txset[peer] = append(txset[peer], tx.Hash()) } log.Trace("Broadcast transaction", "hash", tx.Hash(), "recipients", len(peers)) } for peer, hashes := range txset { peer.AsyncSendTransactions(hashes) } return } // Otherwise only broadcast the announcement to peers for _, tx := range txs { peers := pm.peers.PeersWithoutTx(tx.Hash()) for _, peer := range peers { annos[peer] = append(annos[peer], tx.Hash()) } } for peer, hashes := range annos { if peer.version >= eth65 { peer.AsyncSendPooledTransactionHashes(hashes) } else { peer.AsyncSendTransactions(hashes) } } } // Mined broadcast loop func (pm *ProtocolManager) minedBroadcastLoop() { // automatically stops if unsubscribe for obj := range pm.minedBlockSub.Chan() { if ev, ok := obj.Data.(core.NewMinedBlockEvent); ok { pm.BroadcastBlock(ev.Block, true) // First propagate block to peers pm.BroadcastBlock(ev.Block, false) // Only then announce to the rest } } } func (pm *ProtocolManager) txBroadcastLoop() { for { select { case event := <-pm.txsCh: // For testing purpose only, disable propagation if pm.broadcastTxAnnouncesOnly { pm.BroadcastTransactions(event.Txs, false) continue } pm.BroadcastTransactions(event.Txs, true) // First propagate transactions to peers pm.BroadcastTransactions(event.Txs, false) // Only then announce to the rest // Err() channel will be closed when unsubscribing. case <-pm.txsSub.Err(): return } } } // NodeInfo represents a short summary of the Ethereum sub-protocol metadata // known about the host peer. type NodeInfo struct { Network uint64 `json:"network"` // Ethereum network ID (1=Frontier, 2=Morden, Ropsten=3, Rinkeby=4) Difficulty *big.Int `json:"difficulty"` // Total difficulty of the host's blockchain Genesis common.Hash `json:"genesis"` // SHA3 hash of the host's genesis block Config *params.ChainConfig `json:"config"` // Chain configuration for the fork rules Head common.Hash `json:"head"` // SHA3 hash of the host's best owned block } // NodeInfo retrieves some protocol metadata about the running host node. func (pm *ProtocolManager) NodeInfo() *NodeInfo { currentBlock := pm.blockchain.CurrentBlock() return &NodeInfo{ Network: pm.networkID, Difficulty: pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64()), Genesis: pm.blockchain.Genesis().Hash(), Config: pm.blockchain.Config(), Head: currentBlock.Hash(), } }