// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "context" "crypto/ecdsa" "fmt" "io/ioutil" "math/big" "math/rand" "os" "testing" "time" "github.com/holiman/uint256" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/u256" "github.com/ledgerwatch/turbo-geth/core/state" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/params" ) // testTxPoolConfig is a transaction pool configuration without stateful disk // sideeffects used during testing. var testTxPoolConfig TxPoolConfig func init() { testTxPoolConfig = DefaultTxPoolConfig testTxPoolConfig.Journal = "" testTxPoolConfig.StartOnInit = true } type testBlockChain struct { statedb *state.IntraBlockState tds *state.TrieDbState gasLimit uint64 chainHeadFeed *event.Feed } func (bc *testBlockChain) CurrentBlock() *types.Block { return types.NewBlock(&types.Header{ GasLimit: bc.gasLimit, }, nil, nil, nil) } func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { return bc.CurrentBlock() } func (bc *testBlockChain) StateAt(uint64) (*state.IntraBlockState, *state.DbState, error) { return bc.statedb, nil, nil } func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { return bc.chainHeadFeed.Subscribe(ch) } func (bc *testBlockChain) GetTrieDbState() (*state.TrieDbState, error) { return bc.tds, nil } func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction { return pricedTransaction(nonce, gaslimit, u256.Num1, key) } func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *uint256.Int, key *ecdsa.PrivateKey) *types.Transaction { tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, uint256.NewInt().SetUint64(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key) return tx } func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *uint256.Int, key *ecdsa.PrivateKey, bytes uint64) *types.Transaction { data := make([]byte, bytes) // it is only a test, so insecure random is fine here rand.Read(data) //nolint:gosec tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, uint256.NewInt(), gaslimit, gasprice, data), types.HomesteadSigner{}, key) return tx } func setupTxPool() (*TxPool, *ecdsa.PrivateKey, func()) { diskdb := ethdb.NewMemDatabase() tds := state.NewTrieDbState(common.Hash{}, diskdb, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 10000000, new(event.Feed)} key, _ := crypto.GenerateKey() pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) clear := func() { pool.Stop() diskdb.Close() } return pool, key, clear } // validateTxPoolInternals checks various consistency invariants within the pool. func validateTxPoolInternals(pool *TxPool) error { pool.mu.RLock() defer pool.mu.RUnlock() // Ensure the total transaction set is consistent with pending + queued pending, queued := pool.stats() if total := pool.all.Count(); total != pending+queued { return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued) } if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued { return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued) } // Ensure the next nonce to assign is the correct one for addr, txs := range pool.pending { // Find the last transaction var last uint64 for nonce := range txs.txs.items { if last < nonce { last = nonce } } if nonce := pool.pendingNonces.get(addr); nonce != last+1 { return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1) } } return nil } // validateEvents checks that the correct number of transaction addition events // were fired on the pool's event feed. func validateEvents(events chan NewTxsEvent, count int) error { var received []*types.Transaction for len(received) < count { select { case ev := <-events: received = append(received, ev.Txs...) case <-time.After(time.Second): return fmt.Errorf("event #%d not fired", len(received)) } } if len(received) > count { return fmt.Errorf("more than %d events fired: %v", count, received[count:]) } select { case ev := <-events: return fmt.Errorf("more than %d events fired: %v", count, ev.Txs) case <-time.After(50 * time.Millisecond): // This branch should be "default", but it's a data race between goroutines, // reading the event channel and pushing into it, so better wait a bit ensuring // really nothing gets injected. } return nil } func deriveSender(tx *types.Transaction) (common.Address, error) { return types.Sender(types.HomesteadSigner{}, tx) } type testChain struct { *testBlockChain address common.Address trigger *bool } // testChain.State() is used multiple times to reset the pending state. // when simulate is true it will create a state that indicates // that tx0 and tx1 are included in the chain. func (c *testChain) State() (*state.IntraBlockState, error) { // delay "state change" by one. The tx pool fetches the // state multiple times and by delaying it a bit we simulate // a state change between those fetches. stdb := c.statedb if *c.trigger { db := ethdb.NewMemDatabase() tds := state.NewTrieDbState(common.Hash{}, db, 0) c.tds = tds c.statedb = state.New(c.tds) // simulate that the new head block included tx0 and tx1 c.statedb.SetNonce(c.address, 2) c.statedb.SetBalance(c.address, new(uint256.Int).SetUint64(params.Ether)) *c.trigger = false } return stdb, nil } // This test simulates a scenario where a new block is imported during a // state reset and tests whether the pending state is in sync with the // block head event that initiated the resetState(). func TestStateChangeDuringTransactionPoolReset(t *testing.T) { db := ethdb.NewMemDatabase() defer db.Close() var ( key, _ = crypto.GenerateKey() address = crypto.PubkeyToAddress(key.PublicKey) ) tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) trigger := false // setup pool with 2 transaction in it tds.StartNewBuffer() // Using AddBalance instead of SetBalance to make it dirty statedb.AddBalance(address, new(uint256.Int).SetUint64(params.Ether)) ctx := context.Background() if err := statedb.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := tds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := statedb.CommitBlock(ctx, tds.DbStateWriter()); err != nil { t.Fatal(err) } blockchain := &testChain{&testBlockChain{statedb, tds, 1000000000, new(event.Feed)}, address, &trigger} tx0 := transaction(0, 100000, key) tx1 := transaction(1, 100000, key) pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() nonce := pool.Nonce(address) if nonce != 0 { t.Fatalf("Invalid nonce, want 0, got %d", nonce) } pool.AddRemotesSync([]*types.Transaction{tx0, tx1}) nonce = pool.Nonce(address) if nonce != 2 { t.Fatalf("Invalid nonce, want 2, got %d", nonce) } // trigger state change in the background trigger = true <-pool.requestReset(nil, nil) if _, err := pool.Pending(); err != nil { t.Fatalf("Could not fetch pending transactions: %v", err) } nonce = pool.Nonce(address) if nonce != 2 { t.Fatalf("Invalid nonce, want 2, got %d", nonce) } } func TestInvalidTransactions(t *testing.T) { pool, key, clear := setupTxPool() defer clear() tx := transaction(0, 100, key) from, _ := deriveSender(tx) pool.currentState.AddBalance(from, u256.Num1) if err := pool.AddRemote(tx); err != ErrInsufficientFunds { t.Error("expected", ErrInsufficientFunds) } balance := new(big.Int).Add(tx.Value().ToBig(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice().ToBig())) x, _ := uint256.FromBig(balance) pool.currentState.AddBalance(from, x) if err := pool.AddRemote(tx); err != ErrIntrinsicGas { t.Error("expected", ErrIntrinsicGas, "got", err) } pool.currentState.SetNonce(from, 1) pool.currentState.AddBalance(from, uint256.NewInt().SetUint64(0xffffffffffffff)) tx = transaction(0, 100000, key) if err := pool.AddRemote(tx); err != ErrNonceTooLow { t.Error("expected", ErrNonceTooLow) } tx = transaction(1, 100000, key) pool.gasPrice = big.NewInt(1000) if err := pool.AddRemote(tx); err != ErrUnderpriced { t.Error("expected", ErrUnderpriced, "got", err) } if err := pool.AddLocal(tx); err != nil { t.Error("expected", nil, "got", err) } } func TestTransactionQueue(t *testing.T) { pool, key, clear := setupTxPool() defer clear() tx := transaction(0, 100, key) from, _ := deriveSender(tx) pool.currentTds.StartNewBuffer() pool.currentState.AddBalance(from, uint256.NewInt().SetUint64(1000)) ctx := context.Background() if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } <-pool.requestReset(nil, nil) pool.enqueueTx(tx.Hash(), tx) <-pool.requestPromoteExecutables(newAccountSet(pool.signer, from)) if len(pool.pending) != 1 { t.Error("expected valid txs to be 1 is", len(pool.pending)) } tx = transaction(1, 100, key) from, _ = deriveSender(tx) pool.currentState.SetNonce(from, 2) pool.enqueueTx(tx.Hash(), tx) <-pool.requestPromoteExecutables(newAccountSet(pool.signer, from)) if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok { t.Error("expected transaction to be in tx pool") } if len(pool.queue) > 0 { t.Error("expected transaction queue to be empty. is", len(pool.queue)) } } func TestTransactionQueue2(t *testing.T) { pool, key, clear := setupTxPool() defer clear() tx1 := transaction(0, 100, key) tx2 := transaction(10, 100, key) tx3 := transaction(11, 100, key) from, _ := deriveSender(tx1) pool.currentTds.StartNewBuffer() pool.currentState.AddBalance(from, uint256.NewInt().SetUint64(1000)) ctx := context.Background() if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } pool.reset(nil, nil) pool.enqueueTx(tx1.Hash(), tx1) pool.enqueueTx(tx2.Hash(), tx2) pool.enqueueTx(tx3.Hash(), tx3) pool.promoteExecutables([]common.Address{from}) if len(pool.pending) != 1 { t.Error("expected pending length to be 1, got", len(pool.pending)) } if pool.queue[from].Len() != 2 { t.Error("expected len(queue) == 2, got", pool.queue[from].Len()) } } func TestTransactionChainFork(t *testing.T) { pool, key, clear := setupTxPool() defer clear() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { db := ethdb.NewMemDatabase() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) tds.StartNewBuffer() statedb.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000)) ctx := context.Background() if err := statedb.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := tds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := statedb.CommitBlock(ctx, tds.DbStateWriter()); err != nil { t.Fatal(err) } pool.chain = &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool.lockedReset(nil, nil) clear = func() { pool.Stop() db.Close() } } resetState() tx := transaction(0, 100000, key) if _, err := pool.add(tx, false); err != nil { t.Error("didn't expect error", err) } pool.removeTx(tx.Hash(), true) // reset the pool's internal state resetState() if _, err := pool.add(tx, false); err != nil { t.Error("didn't expect error", err) } } func TestTransactionDoubleNonce(t *testing.T) { pool, key, clear := setupTxPool() defer clear() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { db := ethdb.NewMemDatabase() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) tds.StartNewBuffer() statedb.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000)) ctx := context.Background() if err := statedb.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := tds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := statedb.CommitBlock(ctx, tds.DbStateWriter()); err != nil { t.Fatal(err) } pool.chain = &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool.lockedReset(nil, nil) clear = func() { pool.Stop() db.Close() } } resetState() signer := types.HomesteadSigner{} tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, uint256.NewInt().SetUint64(100), 100000, uint256.NewInt().SetUint64(1), nil), signer, key) tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, uint256.NewInt().SetUint64(100), 1000000, uint256.NewInt().SetUint64(2), nil), signer, key) tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, uint256.NewInt().SetUint64(100), 1000000, uint256.NewInt().SetUint64(1), nil), signer, key) // Add the first two transaction, ensure higher priced stays only if replace, err := pool.add(tx1, false); err != nil || replace { t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace) } if replace, err := pool.add(tx2, false); err != nil || !replace { t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace) } <-pool.requestPromoteExecutables(newAccountSet(signer, addr)) if pool.pending[addr].Len() != 1 { t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) } if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) } // Add the third transaction and ensure it's not saved (smaller price) pool.add(tx3, false) <-pool.requestPromoteExecutables(newAccountSet(signer, addr)) if pool.pending[addr].Len() != 1 { t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) } if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) } // Ensure the total transaction count is correct if pool.all.Count() != 1 { t.Error("expected 1 total transactions, got", pool.all.Count()) } } func TestTransactionMissingNonce(t *testing.T) { pool, key, clear := setupTxPool() defer clear() addr := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000)) tx := transaction(1, 100000, key) if _, err := pool.add(tx, false); err != nil { t.Error("didn't expect error", err) } if len(pool.pending) != 0 { t.Error("expected 0 pending transactions, got", len(pool.pending)) } if pool.queue[addr].Len() != 1 { t.Error("expected 1 queued transaction, got", pool.queue[addr].Len()) } if pool.all.Count() != 1 { t.Error("expected 1 total transactions, got", pool.all.Count()) } } func TestTransactionNonceRecovery(t *testing.T) { const n = 10 pool, key, clear := setupTxPool() defer clear() addr := crypto.PubkeyToAddress(key.PublicKey) pool.currentTds.StartNewBuffer() pool.currentState.SetNonce(addr, n) pool.currentState.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000)) ctx := context.Background() if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } <-pool.requestReset(nil, nil) tx := transaction(n, 100000, key) if err := pool.AddRemote(tx); err != nil { t.Error(err) } // simulate some weird re-order of transactions and missing nonce(s) pool.currentTds.StartNewBuffer() pool.currentState.SetNonce(addr, n-1) pool.currentState.AddBalance(addr, u256.Num1) if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } <-pool.requestReset(nil, nil) if fn := pool.Nonce(addr); fn != n-1 { t.Errorf("expected nonce to be %d, got %d", n-1, fn) } } // Tests that if an account runs out of funds, any pending and queued transactions // are dropped. func TestTransactionDropping(t *testing.T) { // Create a test account and fund it pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentTds.StartNewBuffer() pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000)) ctx := context.Background() if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } // Add some pending and some queued transactions var ( tx0 = transaction(0, 100, key) tx1 = transaction(1, 200, key) tx2 = transaction(2, 300, key) tx10 = transaction(10, 100, key) tx11 = transaction(11, 200, key) tx12 = transaction(12, 300, key) ) pool.promoteTx(account, tx0.Hash(), tx0) pool.promoteTx(account, tx1.Hash(), tx1) pool.promoteTx(account, tx2.Hash(), tx2) pool.enqueueTx(tx10.Hash(), tx10) pool.enqueueTx(tx11.Hash(), tx11) pool.enqueueTx(tx12.Hash(), tx12) // Check that pre and post validations leave the pool as is if pool.pending[account].Len() != 3 { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) } if pool.queue[account].Len() != 3 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) } if pool.all.Count() != 6 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) } <-pool.requestReset(nil, nil) if pool.pending[account].Len() != 3 { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) } if pool.queue[account].Len() != 3 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) } if pool.all.Count() != 6 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) } // Reduce the balance of the account, and check that invalidated transactions are dropped pool.currentTds.StartNewBuffer() pool.currentState.AddBalance(account, uint256.NewInt().Neg(uint256.NewInt().SetUint64(650))) if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } <-pool.requestReset(nil, nil) if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok { t.Errorf("out-of-fund pending transaction present: %v", tx1) } if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok { t.Errorf("out-of-fund queued transaction present: %v", tx11) } if pool.all.Count() != 4 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4) } // Reduce the block gas limit, check that invalidated transactions are dropped pool.chain.(*testBlockChain).gasLimit = 100 <-pool.requestReset(nil, nil) if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok { t.Errorf("over-gased pending transaction present: %v", tx1) } if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok { t.Errorf("over-gased queued transaction present: %v", tx11) } if pool.all.Count() != 2 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2) } } // Tests that if a transaction is dropped from the current pending pool (e.g. out // of fund), all consecutive (still valid, but not executable) transactions are // postponed back into the future queue to prevent broadcasting them. func TestTransactionPostponing(t *testing.T) { // Create the pool to test the postponing with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() // Create two test accounts to produce different gap profiles with keys := make([]*ecdsa.PrivateKey, 2) accs := make([]common.Address, len(keys)) pool.currentTds.StartNewBuffer() for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey) pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(50100)) } ctx := context.Background() if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } // Add a batch consecutive pending transactions for validation txs := []*types.Transaction{} for i, key := range keys { for j := 0; j < 100; j++ { var tx *types.Transaction if (i+j)%2 == 0 { tx = transaction(uint64(j), 25000, key) } else { tx = transaction(uint64(j), 50000, key) } txs = append(txs, tx) } } for i, err := range pool.AddRemotesSync(txs) { if err != nil { t.Fatalf("tx %d: failed to add transactions: %v", i, err) } } // Check that pre and post validations leave the pool as is if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) } if len(pool.queue) != 0 { t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) } if pool.all.Count() != len(txs) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) } <-pool.requestReset(nil, nil) if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) } if len(pool.queue) != 0 { t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) } if pool.all.Count() != len(txs) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) } // Reduce the balance of the account, and check that transactions are reorganised pool.currentTds.StartNewBuffer() for _, addr := range accs { pool.currentState.AddBalance(addr, uint256.NewInt().Neg(u256.Num1)) } if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } <-pool.requestReset(nil, nil) // The first account's first transaction remains valid, check that subsequent // ones are either filtered out, or queued up for later. if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok { t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0]) } if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok { t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0]) } for i, tx := range txs[1:100] { if i%2 == 1 { if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok { t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) } } else { if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) } } } // The second account's first transaction got invalid, check that all transactions // are either filtered out, or queued up for later. if pool.pending[accs[1]] != nil { t.Errorf("invalidated account still has pending transactions") } for i, tx := range txs[100:] { if i%2 == 1 { if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok { t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx) } } else { if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx) } } } if pool.all.Count() != len(txs)/2 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2) } } // Tests that if the transaction pool has both executable and non-executable // transactions from an origin account, filling the nonce gap moves all queued // ones into the pending pool. func TestTransactionGapFilling(t *testing.T) { // Create a test account and fund it pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000)) // Keep track of transaction events to ensure all executables get announced events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) sub := pool.txFeed.Subscribe(events) defer sub.Unsubscribe() // Create a pending and a queued transaction with a nonce-gap in between pool.AddRemotesSync([]*types.Transaction{ transaction(0, 100000, key), transaction(2, 100000, key), }) pending, queued := pool.Stats() if pending != 1 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1) } if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } if err := validateEvents(events, 1); err != nil { t.Fatalf("original event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Fill the nonce gap and ensure all transactions become pending if err := pool.addRemoteSync(transaction(1, 100000, key)); err != nil { t.Fatalf("failed to add gapped transaction: %v", err) } pending, queued = pool.Stats() if pending != 3 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateEvents(events, 2); err != nil { t.Fatalf("gap-filling event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that if the transaction count belonging to a single account goes above // some threshold, the higher transactions are dropped to prevent DOS attacks. func TestTransactionQueueAccountLimiting(t *testing.T) { // Create a test account and fund it pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000)) // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ { if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if len(pool.pending) != 0 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) } if i <= testTxPoolConfig.AccountQueue { if pool.queue[account].Len() != int(i) { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i) } } else { if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) { t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue) } } } if pool.all.Count() != int(testTxPoolConfig.AccountQueue) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue) } } // Tests that if the transaction count belonging to multiple accounts go above // some threshold, the higher transactions are dropped to prevent DOS attacks. // // This logic should not hold for local transactions, unless the local tracking // mechanism is disabled. func TestTransactionQueueGlobalLimiting(t *testing.T) { testTransactionQueueGlobalLimiting(t, false) } func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) { testTransactionQueueGlobalLimiting(t, true) } func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) { // Create the pool to test the limit enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.NoLocals = nolocals config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible) pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Create a number of test accounts and fund them (last one will be the local) keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } local := keys[len(keys)-1] // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := make(types.Transactions, 0, 3*config.GlobalQueue) for len(txs) < cap(txs) { key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account addr := crypto.PubkeyToAddress(key.PublicKey) txs = append(txs, transaction(nonces[addr]+1, 100000, key)) nonces[addr]++ } // Import the batch and verify that limits have been enforced pool.AddRemotesSync(txs) queued := 0 for addr, list := range pool.queue { if list.Len() > int(config.AccountQueue) { t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) } queued += list.Len() } if queued > int(config.GlobalQueue) { t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) } // Generate a batch of transactions from the local account and import them txs = txs[:0] for i := uint64(0); i < 3*config.GlobalQueue; i++ { txs = append(txs, transaction(i+1, 100000, local)) } pool.AddLocals(txs) // If locals are disabled, the previous eviction algorithm should apply here too if nolocals { queued := 0 for addr, list := range pool.queue { if list.Len() > int(config.AccountQueue) { t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) } queued += list.Len() } if queued > int(config.GlobalQueue) { t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) } } else { // Local exemptions are enabled, make sure the local account owned the queue if len(pool.queue) != 1 { t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1) } // Also ensure no local transactions are ever dropped, even if above global limits if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue { t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue) } } } // Tests that if an account remains idle for a prolonged amount of time, any // non-executable transactions queued up are dropped to prevent wasting resources // on shuffling them around. // // This logic should not hold for local transactions, unless the local tracking // mechanism is disabled. func TestTransactionQueueTimeLimiting(t *testing.T) { testTransactionQueueTimeLimiting(t, false) } func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) { testTransactionQueueTimeLimiting(t, true) } func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) { // Reduce the eviction interval to a testable amount defer func(old time.Duration) { evictionInterval = old }(evictionInterval) evictionInterval = time.Second // Create the pool to test the non-expiration enforcement db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.Lifetime = time.Second config.NoLocals = nolocals pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Create two test accounts to ensure remotes expire but locals do not local, _ := crypto.GenerateKey() remote, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), uint256.NewInt().SetUint64(1000000000)) pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), uint256.NewInt().SetUint64(1000000000)) // Add the two transactions and ensure they both are queued up if err := pool.AddLocal(pricedTransaction(1, 100000, u256.Num1, local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(1, 100000, u256.Num1, remote)); err != nil { t.Fatalf("failed to add remote transaction: %v", err) } pending, queued := pool.Stats() if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } if queued != 2 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains time.Sleep(2 * config.Lifetime) pending, queued = pool.Stats() if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } if nolocals { if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } } else { if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that even if the transaction count belonging to a single account goes // above some threshold, as long as the transactions are executable, they are // accepted. func TestTransactionPendingLimiting(t *testing.T) { // Create a test account and fund it pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000)) // Keep track of transaction events to ensure all executables get announced events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) sub := pool.txFeed.Subscribe(events) defer sub.Unsubscribe() // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if pool.pending[account].Len() != int(i)+1 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1) } if len(pool.queue) != 0 { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0) } } if pool.all.Count() != int(testTxPoolConfig.AccountQueue+5) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue+5) } if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil { t.Fatalf("event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that if the transaction count belonging to multiple accounts go above // some hard threshold, the higher transactions are dropped to prevent DOS // attacks. func TestTransactionPendingGlobalLimiting(t *testing.T) { // Create the pool to test the limit enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.GlobalSlots = config.AccountSlots * 10 pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := types.Transactions{} for _, key := range keys { addr := crypto.PubkeyToAddress(key.PublicKey) for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ { txs = append(txs, transaction(nonces[addr], 100000, key)) nonces[addr]++ } } // Import the batch and verify that limits have been enforced pool.AddRemotesSync(txs) pending := 0 for _, list := range pool.pending { pending += list.Len() } if pending > int(config.GlobalSlots) { t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Test the limit on transaction size is enforced correctly. // This test verifies every transaction having allowed size // is added to the pool, and longer transactions are rejected. func TestTransactionAllowedTxSize(t *testing.T) { // Create a test account and fund it pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000000)) // Compute maximal data size for transactions (lower bound). // // It is assumed the fields in the transaction (except of the data) are: // - nonce <= 32 bytes // - gasPrice <= 32 bytes // - gasLimit <= 32 bytes // - recipient == 20 bytes // - value <= 32 bytes // - signature == 65 bytes // All those fields are summed up to at most 213 bytes. baseSize := uint64(213) dataSize := txMaxSize - baseSize // Try adding a transaction with maximal allowed size tx := pricedDataTransaction(0, pool.currentMaxGas, u256.Num1, key, dataSize) if err := pool.addRemoteSync(tx); err != nil { t.Fatalf("failed to add transaction of size %d, close to maximal: %v", int(tx.Size()), err) } // Try adding a transaction with random allowed size if err := pool.addRemoteSync(pricedDataTransaction(1, pool.currentMaxGas, u256.Num1, key, uint64(rand.Intn(int(dataSize))))); err != nil { t.Fatalf("failed to add transaction of random allowed size: %v", err) } // Try adding a transaction of minimal not allowed size if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, u256.Num1, key, txMaxSize)); err == nil { t.Fatalf("expected rejection on slightly oversize transaction") } // Try adding a transaction of random not allowed size if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, u256.Num1, key, dataSize+1+uint64(rand.Intn(int(10*txMaxSize))))); err == nil { t.Fatalf("expected rejection on oversize transaction") } // Run some sanity checks on the pool internals pending, queued := pool.Stats() if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that if transactions start being capped, transactions are also removed from 'all' func TestTransactionCapClearsFromAll(t *testing.T) { // Create the pool to test the limit enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.AccountSlots = 2 config.AccountQueue = 2 config.GlobalSlots = 8 pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Create a number of test accounts and fund them key, _ := crypto.GenerateKey() addr := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(addr, uint256.NewInt().SetUint64(1000000)) txs := types.Transactions{} for j := 0; j < int(config.GlobalSlots)*2; j++ { txs = append(txs, transaction(uint64(j), 100000, key)) } // Import the batch and verify that limits have been enforced pool.AddRemotes(txs) if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that if the transaction count belonging to multiple accounts go above // some hard threshold, if they are under the minimum guaranteed slot count then // the transactions are still kept. func TestTransactionPendingMinimumAllowance(t *testing.T) { // Create the pool to test the limit enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.GlobalSlots = 1 pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := types.Transactions{} for _, key := range keys { addr := crypto.PubkeyToAddress(key.PublicKey) for j := 0; j < int(config.AccountSlots)*2; j++ { txs = append(txs, transaction(nonces[addr], 100000, key)) nonces[addr]++ } } // Import the batch and verify that limits have been enforced pool.AddRemotesSync(txs) for addr, list := range pool.pending { if list.Len() != int(config.AccountSlots) { t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that setting the transaction pool gas price to a higher value correctly // discards everything cheaper than that and moves any gapped transactions back // from the pending pool to the queue. // // Note, local transactions are never allowed to be dropped. func TestTransactionPoolRepricing(t *testing.T) { // Create the pool to test the pricing enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() // Keep track of transaction events to ensure all executables get announced events := make(chan NewTxsEvent, 32) sub := pool.txFeed.Subscribe(events) defer sub.Unsubscribe() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 4) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } // Generate and queue a batch of transactions, both pending and queued txs := types.Transactions{} txs = append(txs, pricedTransaction(0, 100000, u256.Num2, keys[0])) txs = append(txs, pricedTransaction(1, 100000, u256.Num1, keys[0])) txs = append(txs, pricedTransaction(2, 100000, u256.Num2, keys[0])) txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[1])) txs = append(txs, pricedTransaction(1, 100000, u256.Num2, keys[1])) txs = append(txs, pricedTransaction(2, 100000, u256.Num2, keys[1])) txs = append(txs, pricedTransaction(1, 100000, u256.Num2, keys[2])) txs = append(txs, pricedTransaction(2, 100000, u256.Num1, keys[2])) txs = append(txs, pricedTransaction(3, 100000, u256.Num2, keys[2])) ltx := pricedTransaction(0, 100000, u256.Num1, keys[3]) // Import the batch and that both pending and queued transactions match up pool.AddRemotesSync(txs) pool.AddLocal(ltx) pending, queued := pool.Stats() if pending != 7 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7) } if queued != 3 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3) } if err := validateEvents(events, 7); err != nil { t.Fatalf("original event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Reprice the pool and check that underpriced transactions get dropped pool.SetGasPrice(big.NewInt(2)) pending, queued = pool.Stats() if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } if queued != 5 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5) } if err := validateEvents(events, 0); err != nil { t.Fatalf("reprice event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Check that we can't add the old transactions back if err := pool.AddRemote(pricedTransaction(1, 100000, u256.Num1, keys[0])); err != ErrUnderpriced { t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) } if err := pool.AddRemote(pricedTransaction(0, 100000, u256.Num1, keys[1])); err != ErrUnderpriced { t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) } if err := pool.AddRemote(pricedTransaction(2, 100000, u256.Num1, keys[2])); err != ErrUnderpriced { t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced) } if err := validateEvents(events, 0); err != nil { t.Fatalf("post-reprice event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // However we can add local underpriced transactions tx := pricedTransaction(1, 100000, u256.Num1, keys[3]) if err := pool.AddLocal(tx); err != nil { t.Fatalf("failed to add underpriced local transaction: %v", err) } if pending, _ = pool.Stats(); pending != 3 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) } if err := validateEvents(events, 1); err != nil { t.Fatalf("post-reprice local event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // And we can fill gaps with properly priced transactions if err := pool.AddRemote(pricedTransaction(1, 100000, u256.Num2, keys[0])); err != nil { t.Fatalf("failed to add pending transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(0, 100000, u256.Num2, keys[1])); err != nil { t.Fatalf("failed to add pending transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(2, 100000, u256.Num2, keys[2])); err != nil { t.Fatalf("failed to add queued transaction: %v", err) } if err := validateEvents(events, 5); err != nil { t.Fatalf("post-reprice event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that setting the transaction pool gas price to a higher value does not // remove local transactions. func TestTransactionPoolRepricingKeepsLocals(t *testing.T) { // Create the pool to test the pricing enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 3) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000*1000000)) } // Create transaction (both pending and queued) with a linearly growing gasprice for i := uint64(0); i < 500; i++ { // Add pending transaction. pendingTx := pricedTransaction(i, 100000, uint256.NewInt().SetUint64(i), keys[2]) if err := pool.AddLocal(pendingTx); err != nil { t.Fatal(err) } // Add queued transaction. queuedTx := pricedTransaction(i+501, 100000, uint256.NewInt().SetUint64(i), keys[2]) if err := pool.AddLocal(queuedTx); err != nil { t.Fatal(err) } } pending, queued := pool.Stats() expPending, expQueued := 500, 500 validate := func() { pending, queued = pool.Stats() if pending != expPending { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending) } if queued != expQueued { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } validate() // Reprice the pool and check that nothing is dropped pool.SetGasPrice(big.NewInt(2)) validate() pool.SetGasPrice(big.NewInt(2)) pool.SetGasPrice(big.NewInt(4)) pool.SetGasPrice(big.NewInt(8)) pool.SetGasPrice(big.NewInt(100)) validate() } // Tests that when the pool reaches its global transaction limit, underpriced // transactions are gradually shifted out for more expensive ones and any gapped // pending transactions are moved into the queue. // // Note, local transactions are never allowed to be dropped. func TestTransactionPoolUnderpricing(t *testing.T) { // Create the pool to test the pricing enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.GlobalSlots = 2 config.GlobalQueue = 2 pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Keep track of transaction events to ensure all executables get announced events := make(chan NewTxsEvent, 32) sub := pool.txFeed.Subscribe(events) defer sub.Unsubscribe() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 4) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } // Generate and queue a batch of transactions, both pending and queued txs := types.Transactions{} txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[0])) txs = append(txs, pricedTransaction(1, 100000, u256.Num2, keys[0])) txs = append(txs, pricedTransaction(1, 100000, u256.Num1, keys[1])) ltx := pricedTransaction(0, 100000, u256.Num1, keys[2]) // Import the batch and that both pending and queued transactions match up pool.AddRemotes(txs) pool.AddLocal(ltx) pending, queued := pool.Stats() if pending != 3 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) } if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } if err := validateEvents(events, 3); err != nil { t.Fatalf("original event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Ensure that adding an underpriced transaction on block limit fails if err := pool.AddRemote(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(1), keys[1])); err != ErrUnderpriced { t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) } // Ensure that adding high priced transactions drops cheap ones, but not own if err := pool.AddRemote(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que - t.Fatalf("failed to add well priced transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2 t.Fatalf("failed to add well priced transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(3, 100000, uint256.NewInt().SetUint64(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3 t.Fatalf("failed to add well priced transaction: %v", err) } pending, queued = pool.Stats() if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } if queued != 2 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) } if err := validateEvents(events, 1); err != nil { t.Fatalf("additional event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Ensure that adding local transactions can push out even higher priced ones ltx = pricedTransaction(1, 100000, u256.Num0, keys[2]) if err := pool.AddLocal(ltx); err != nil { t.Fatalf("failed to append underpriced local transaction: %v", err) } ltx = pricedTransaction(0, 100000, u256.Num0, keys[3]) if err := pool.AddLocal(ltx); err != nil { t.Fatalf("failed to add new underpriced local transaction: %v", err) } pending, queued = pool.Stats() if pending != 3 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) } if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } if err := validateEvents(events, 2); err != nil { t.Fatalf("local event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that more expensive transactions push out cheap ones from the pool, but // without producing instability by creating gaps that start jumping transactions // back and forth between queued/pending. func TestTransactionPoolStableUnderpricing(t *testing.T) { // Create the pool to test the pricing enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.GlobalSlots = 128 config.GlobalQueue = 0 pool := NewTxPool(config, params.TestChainConfig, blockchain) defer pool.Stop() // Keep track of transaction events to ensure all executables get announced events := make(chan NewTxsEvent, 32) sub := pool.txFeed.Subscribe(events) defer sub.Unsubscribe() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 2) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } // Fill up the entire queue with the same transaction price points txs := types.Transactions{} for i := uint64(0); i < config.GlobalSlots; i++ { txs = append(txs, pricedTransaction(i, 100000, u256.Num1, keys[0])) } pool.AddRemotesSync(txs) pending, queued := pool.Stats() if pending != int(config.GlobalSlots) { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateEvents(events, int(config.GlobalSlots)); err != nil { t.Fatalf("original event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap if err := pool.addRemoteSync(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(3), keys[1])); err != nil { t.Fatalf("failed to add well priced transaction: %v", err) } pending, queued = pool.Stats() if pending != int(config.GlobalSlots) { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateEvents(events, 1); err != nil { t.Fatalf("additional event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that the pool rejects duplicate transactions. func TestTransactionDeduplication(t *testing.T) { db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) // Create the pool to test the pricing enforcement with statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() // Create a test account to add transactions with key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt().SetUint64(1000000000)) // Create a batch of transactions and add a few of them txs := make([]*types.Transaction, 16) for i := 0; i < len(txs); i++ { txs[i] = pricedTransaction(uint64(i), 100000, u256.Num1, key) } var firsts []*types.Transaction for i := 0; i < len(txs); i += 2 { firsts = append(firsts, txs[i]) } errs := pool.AddRemotesSync(firsts) if len(errs) != len(firsts) { t.Fatalf("first add mismatching result count: have %d, want %d", len(errs), len(firsts)) } for i, err := range errs { if err != nil { t.Errorf("add %d failed: %v", i, err) } } pending, queued := pool.Stats() if pending != 1 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1) } if queued != len(txs)/2-1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, len(txs)/2-1) } // Try to add all of them now and ensure previous ones error out as knowns errs = pool.AddRemotesSync(txs) if len(errs) != len(txs) { t.Fatalf("all add mismatching result count: have %d, want %d", len(errs), len(txs)) } for i, err := range errs { if i%2 == 0 && err == nil { t.Errorf("add %d succeeded, should have failed as known", i) } if i%2 == 1 && err != nil { t.Errorf("add %d failed: %v", i, err) } } pending, queued = pool.Stats() if pending != len(txs) { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, len(txs)) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that the pool rejects replacement transactions that don't meet the minimum // price bump required. func TestTransactionReplacement(t *testing.T) { // Create the pool to test the pricing enforcement with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() // Keep track of transaction events to ensure all executables get announced events := make(chan NewTxsEvent, 32) sub := pool.txFeed.Subscribe(events) defer sub.Unsubscribe() // Create a test account to add transactions with key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt().SetUint64(1000000000)) // Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) price := uint64(100) threshold := (price * (100 + testTxPoolConfig.PriceBump)) / 100 if err := pool.addRemoteSync(pricedTransaction(0, 100000, u256.Num1, key)); err != nil { t.Fatalf("failed to add original cheap pending transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(0, 100001, u256.Num1, key)); err != ErrReplaceUnderpriced { t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) } if err := pool.AddRemote(pricedTransaction(0, 100000, u256.Num2, key)); err != nil { t.Fatalf("failed to replace original cheap pending transaction: %v", err) } if err := validateEvents(events, 2); err != nil { t.Fatalf("cheap replacement event firing failed: %v", err) } if err := pool.addRemoteSync(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(price), key)); err != nil { t.Fatalf("failed to add original proper pending transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(0, 100001, uint256.NewInt().SetUint64(threshold-1), key)); err != ErrReplaceUnderpriced { t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) } if err := pool.AddRemote(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(threshold), key)); err != nil { t.Fatalf("failed to replace original proper pending transaction: %v", err) } if err := validateEvents(events, 2); err != nil { t.Fatalf("proper replacement event firing failed: %v", err) } // Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(1), key)); err != nil { t.Fatalf("failed to add original cheap queued transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(2, 100001, uint256.NewInt().SetUint64(1), key)); err != ErrReplaceUnderpriced { t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) } if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(2), key)); err != nil { t.Fatalf("failed to replace original cheap queued transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(price), key)); err != nil { t.Fatalf("failed to add original proper queued transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(2, 100001, uint256.NewInt().SetUint64(threshold-1), key)); err != ErrReplaceUnderpriced { t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) } if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(threshold), key)); err != nil { t.Fatalf("failed to replace original proper queued transaction: %v", err) } if err := validateEvents(events, 0); err != nil { t.Fatalf("queued replacement event firing failed: %v", err) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that local transactions are journaled to disk, but remote transactions // get discarded between restarts. func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) } func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) } func testTransactionJournaling(t *testing.T, nolocals bool) { // Create a temporary file for the journal file, err := ioutil.TempFile("", "") if err != nil { t.Fatalf("failed to create temporary journal: %v", err) } journal := file.Name() defer os.Remove(journal) // Clean up the temporary file, we only need the path for now file.Close() os.Remove(journal) // Create the original pool to inject transaction into the journal db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} config := testTxPoolConfig config.NoLocals = nolocals config.Journal = journal config.Rejournal = time.Second pool := NewTxPool(config, params.TestChainConfig, blockchain) // Create two test accounts to ensure remotes expire but locals do not local, _ := crypto.GenerateKey() remote, _ := crypto.GenerateKey() pool.currentTds.StartNewBuffer() pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), uint256.NewInt().SetUint64(1000000000)) pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), uint256.NewInt().SetUint64(1000000000)) ctx := context.Background() if err := pool.currentState.FinalizeTx(ctx, pool.currentTds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := pool.currentTds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := pool.currentState.CommitBlock(ctx, pool.currentTds.DbStateWriter()); err != nil { t.Fatal(err) } // Add three local and a remote transactions and ensure they are queued up if err := pool.AddLocal(pricedTransaction(0, 100000, u256.Num1, local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddLocal(pricedTransaction(1, 100000, u256.Num1, local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddLocal(pricedTransaction(2, 100000, u256.Num1, local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.addRemoteSync(pricedTransaction(0, 100000, u256.Num1, remote)); err != nil { t.Fatalf("failed to add remote transaction: %v", err) } pending, queued := pool.Stats() if pending != 4 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive pool.Stop() tds.StartNewBuffer() statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) statedb.AddBalance(crypto.PubkeyToAddress(local.PublicKey), u256.Num1) if err := statedb.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := tds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := statedb.CommitBlock(ctx, tds.DbStateWriter()); err != nil { t.Fatal(err) } blockchain = &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool = NewTxPool(config, params.TestChainConfig, blockchain) pending, queued = pool.Stats() if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if nolocals { if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } } else { if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Bump the nonce temporarily and ensure the newly invalidated transaction is removed tds.StartNewBuffer() statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2) statedb.AddBalance(crypto.PubkeyToAddress(local.PublicKey), u256.Num1) if err := statedb.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := tds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := statedb.CommitBlock(ctx, tds.DbStateWriter()); err != nil { t.Fatal(err) } <-pool.requestReset(nil, nil) time.Sleep(2 * config.Rejournal) pool.Stop() tds.StartNewBuffer() statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) statedb.AddBalance(crypto.PubkeyToAddress(local.PublicKey), u256.Num1) if err := statedb.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil { t.Fatal(err) } if _, err := tds.ComputeTrieRoots(); err != nil { t.Fatal(err) } if err := statedb.CommitBlock(ctx, tds.DbStateWriter()); err != nil { t.Fatal(err) } blockchain = &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool = NewTxPool(config, params.TestChainConfig, blockchain) pending, queued = pool.Stats() if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } if nolocals { if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } } else { if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } pool.Stop() } // TestTransactionStatusCheck tests that the pool can correctly retrieve the // pending status of individual transactions. func TestTransactionStatusCheck(t *testing.T) { // Create the pool to test the status retrievals with db := ethdb.NewMemDatabase() defer db.Close() tds := state.NewTrieDbState(common.Hash{}, db, 0) statedb := state.New(tds) blockchain := &testBlockChain{statedb, tds, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) defer pool.Stop() // Create the test accounts to check various transaction statuses with keys := make([]*ecdsa.PrivateKey, 3) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000)) } // Generate and queue a batch of transactions, both pending and queued txs := types.Transactions{} txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[0])) // Pending only txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[1])) // Pending and queued txs = append(txs, pricedTransaction(2, 100000, u256.Num1, keys[1])) txs = append(txs, pricedTransaction(2, 100000, u256.Num1, keys[2])) // Queued only // Import the transaction and ensure they are correctly added pool.AddRemotesSync(txs) pending, queued := pool.Stats() if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } if queued != 2 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Retrieve the status of each transaction and validate them hashes := make([]common.Hash, len(txs)) for i, tx := range txs { hashes[i] = tx.Hash() } hashes = append(hashes, common.Hash{}) statuses := pool.Status(hashes) expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown} for i := 0; i < len(statuses); i++ { if statuses[i] != expect[i] { t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i]) } } } // Test the transaction slots consumption is computed correctly func TestTransactionSlotCount(t *testing.T) { key, _ := crypto.GenerateKey() // Check that an empty transaction consumes a single slot smallTx := pricedDataTransaction(0, 0, u256.Num0, key, 0) if slots := numSlots(smallTx); slots != 1 { t.Fatalf("small transactions slot count mismatch: have %d want %d", slots, 1) } // Check that a large transaction consumes the correct number of slots bigTx := pricedDataTransaction(0, 0, u256.Num0, key, uint64(10*txSlotSize)) if slots := numSlots(bigTx); slots != 11 { t.Fatalf("big transactions slot count mismatch: have %d want %d", slots, 11) } } // Benchmarks the speed of validating the contents of the pending queue of the // transaction pool. func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) } func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) } func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) } func benchmarkPendingDemotion(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000)) for i := 0; i < size; i++ { tx := transaction(uint64(i), 100000, key) pool.promoteTx(account, tx.Hash(), tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.demoteUnexecutables() } } // Benchmarks the speed of scheduling the contents of the future queue of the // transaction pool. func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) } func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) } func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) } func benchmarkFuturePromotion(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000)) for i := 0; i < size; i++ { tx := transaction(uint64(1+i), 100000, key) pool.enqueueTx(tx.Hash(), tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.promoteExecutables(nil) } } // Benchmarks the speed of batched transaction insertion. func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) } func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) } func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) } func benchmarkPoolBatchInsert(b *testing.B, size int) { // Generate a batch of transactions to enqueue into the pool pool, key, clear := setupTxPool() defer clear() account := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000)) batches := make([]types.Transactions, b.N) for i := 0; i < b.N; i++ { batches[i] = make(types.Transactions, size) for j := 0; j < size; j++ { batches[i][j] = transaction(uint64(size*i+j), 100000, key) } } // Benchmark importing the transactions into the queue b.ResetTimer() for _, batch := range batches { pool.AddRemotes(batch) } }