// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "encoding/binary" "fmt" "io" "reflect" "sync" "time" "github.com/allegro/bigcache" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/metrics" "github.com/ledgerwatch/turbo-geth/rlp" ) var ( memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil) memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil) memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil) memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil) memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil) memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil) memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil) memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil) memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil) memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil) memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil) memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil) memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil) ) // secureKeyPrefix is the database key prefix used to store trie node preimages. var secureKeyPrefix = []byte("secure-key-") // secureKeyLength is the length of the above prefix + 32byte hash. const secureKeyLength = 11 + 32 // DatabaseReader wraps the Get method of a backing store for the trie. type DatabaseReader interface { // Get retrieves the value associated with key from the database. Get(bucket, key []byte) (value []byte, err error) GetAsOf(bucket, hBucket, key []byte, timestamp uint64) ([]byte, error) // Has retrieves whether a key is present in the database. Has(bucket, key []byte) (bool, error) Walk(bucket, key []byte, keybits uint, walker func([]byte, []byte) (bool, error)) error } // Database is an intermediate write layer between the trie data structures and // the disk database. The aim is to accumulate trie writes in-memory and only // periodically flush a couple tries to disk, garbage collecting the remainder. // // Note, the trie Database is **not** thread safe in its mutations, but it **is** // thread safe in providing individual, independent node access. The rationale // behind this split design is to provide read access to RPC handlers and sync // servers even while the trie is executing expensive garbage collection. type Database struct { diskdb ethdb.Database // Persistent storage for matured trie nodes cleans *bigcache.BigCache // GC friendly memory cache of clean node RLPs dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes oldest common.Hash // Oldest tracked node, flush-list head newest common.Hash // Newest tracked node, flush-list tail preimages map[common.Hash][]byte // Preimages of nodes from the secure trie gctime time.Duration // Time spent on garbage collection since last commit gcnodes uint64 // Nodes garbage collected since last commit gcsize common.StorageSize // Data storage garbage collected since last commit flushtime time.Duration // Time spent on data flushing since last commit flushnodes uint64 // Nodes flushed since last commit flushsize common.StorageSize // Data storage flushed since last commit dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. metadata) childrenSize common.StorageSize // Storage size of the external children tracking preimagesSize common.StorageSize // Storage size of the preimages cache lock sync.RWMutex } // rawNode is a simple binary blob used to differentiate between collapsed trie // nodes and already encoded RLP binary blobs (while at the same time store them // in the same cache fields). type rawNode []byte func (n rawNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") } func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") } // rawFullNode represents only the useful data content of a full node, with the // caches and flags stripped out to minimize its data storage. This type honors // the same RLP encoding as the original parent. type rawFullNode [17]node func (n rawFullNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") } func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") } func (n rawFullNode) EncodeRLP(w io.Writer) error { var nodes [17]node for i, child := range n { if child != nil { nodes[i] = child } else { nodes[i] = nilValueNode } } return rlp.Encode(w, nodes) } // rawShortNode represents only the useful data content of a short node, with the // caches and flags stripped out to minimize its data storage. This type honors // the same RLP encoding as the original parent. type rawShortNode struct { Key []byte Val node } func (n rawShortNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") } func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") } // cachedNode is all the information we know about a single cached node in the // memory database write layer. type cachedNode struct { node node // Cached collapsed trie node, or raw rlp data size uint16 // Byte size of the useful cached data parents uint32 // Number of live nodes referencing this one children map[common.Hash]uint16 // External children referenced by this node flushPrev common.Hash // Previous node in the flush-list flushNext common.Hash // Next node in the flush-list } // cachedNodeSize is the raw size of a cachedNode data structure without any // node data included. It's an approximate size, but should be a lot better // than not counting them. var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size()) // cachedNodeChildrenSize is the raw size of an initialized but empty external // reference map. const cachedNodeChildrenSize = 48 // rlp returns the raw rlp encoded blob of the cached node, either directly from // the cache, or by regenerating it from the collapsed node. func (n *cachedNode) rlp() []byte { return nil } // obj returns the decoded and expanded trie node, either directly from the cache, // or by regenerating it from the rlp encoded blob. func (n *cachedNode) obj(hash common.Hash, cachegen uint16) node { // FIXME: whu is this not implemented? return nil } // childs returns all the tracked children of this node, both the implicit ones // from inside the node as well as the explicit ones from outside the node. func (n *cachedNode) childs() []common.Hash { return nil } // gatherChildren traverses the node hierarchy of a collapsed storage node and // retrieves all the hashnode children. func gatherChildren(n node, children *[]common.Hash) { } // simplifyNode traverses the hierarchy of an expanded memory node and discards // all the internal caches, returning a node that only contains the raw data. func simplifyNode(n node) node { return nil } // expandNode traverses the node hierarchy of a collapsed storage node and converts // all fields and keys into expanded memory form. func expandNode(hash hashNode, n node, cachegen uint16) node { // FIXME: Intentionally? does nothing in TurboGeth return nil } // trienodeHasher is a struct to be used with BigCache, which uses a Hasher to // determine which shard to place an entry into. It's not a cryptographic hash, // just to provide a bit of anti-collision (default is FNV64a). // // Since trie keys are already hashes, we can just use the key directly to // map shard id. type trienodeHasher struct{} // Sum64 implements the bigcache.Hasher interface. func (t trienodeHasher) Sum64(key string) uint64 { return binary.BigEndian.Uint64([]byte(key)) } // NewDatabase creates a new trie database to store ephemeral trie content before // its written out to disk or garbage collected. No read cache is created, so all // data retrievals will hit the underlying disk database. func NewDatabase(diskdb ethdb.Database) *Database { return NewDatabaseWithCache(diskdb, 0) } // NewDatabaseWithCache creates a new trie database to store ephemeral trie content // before its written out to disk or garbage collected. It also acts as a read cache // for nodes loaded from disk. func NewDatabaseWithCache(diskdb ethdb.Database, cache int) *Database { var cleans *bigcache.BigCache if cache > 0 { cleans, _ = bigcache.NewBigCache(bigcache.Config{ Shards: 1024, LifeWindow: time.Hour, MaxEntriesInWindow: cache * 1024, MaxEntrySize: 512, HardMaxCacheSize: cache, Hasher: trienodeHasher{}, }) } return &Database{ diskdb: diskdb, cleans: cleans, dirties: map[common.Hash]*cachedNode{{}: { children: make(map[common.Hash]uint16), }}, preimages: make(map[common.Hash][]byte), } } // DiskDB retrieves the persistent storage backing the trie database. // FIXME: maybe a more restrictive interface? func (db *Database) DiskDB() ethdb.Database { return db.diskdb } // InsertBlob writes a new reference tracked blob to the memory database if it's // yet unknown. This method should only be used for non-trie nodes that require // reference counting, since trie nodes are garbage collected directly through // their embedded children. func (db *Database) InsertBlob(hash common.Hash, blob []byte) { } // insert inserts a collapsed trie node into the memory database. This method is // a more generic version of InsertBlob, supporting both raw blob insertions as // well ex trie node insertions. The blob must always be specified to allow proper // size tracking. func (db *Database) insert(hash common.Hash, blob []byte, node node) { // If the node's already cached, skip if _, ok := db.dirties[hash]; ok { return } // Create the cached entry for this node entry := &cachedNode{ node: simplifyNode(node), size: uint16(len(blob)), flushPrev: db.newest, } for _, child := range entry.childs() { if c := db.dirties[child]; c != nil { c.parents++ } } db.dirties[hash] = entry // Update the flush-list endpoints if db.oldest == (common.Hash{}) { db.oldest, db.newest = hash, hash } else { db.dirties[db.newest].flushNext, db.newest = hash, hash } db.dirtiesSize += common.StorageSize(common.HashLength + entry.size) } // insertPreimage writes a new trie node pre-image to the memory database if it's // yet unknown. The method will make a copy of the slice. // // Note, this method assumes that the database's lock is held! func (db *Database) insertPreimage(hash common.Hash, preimage []byte) { if _, ok := db.preimages[hash]; ok { return } db.preimages[hash] = common.CopyBytes(preimage) db.preimagesSize += common.StorageSize(common.HashLength + len(preimage)) } // node retrieves a cached trie node from memory, or returns nil if none can be // found in the memory cache. func (db *Database) node(hash common.Hash, cachegen uint16) node { // FIXME: Intentionally? does nothing in TurboGeth return nil } // Node retrieves an encoded cached trie node from memory. If it cannot be found // cached, the method queries the persistent database for the content. func (db *Database) Node(hash common.Hash) ([]byte, error) { return db.diskdb.Get(nil, hash[:]) } // Nodes retrieves the hashes of all the nodes cached within the memory database. // This method is extremely expensive and should only be used to validate internal // states in test code. func (db *Database) Nodes() []common.Hash { db.lock.RLock() defer db.lock.RUnlock() var hashes = make([]common.Hash, 0, len(db.dirties)) for hash := range db.dirties { if hash != (common.Hash{}) { // Special case for "root" references/nodes hashes = append(hashes, hash) } } return hashes } // Reference adds a new reference from a parent node to a child node. func (db *Database) Reference(child common.Hash, parent common.Hash) { db.lock.Lock() defer db.lock.Unlock() db.reference(child, parent) } // reference is the private locked version of Reference. func (db *Database) reference(child common.Hash, parent common.Hash) { // If the node does not exist, it's a node pulled from disk, skip node, ok := db.dirties[child] if !ok { return } // If the reference already exists, only duplicate for roots if db.dirties[parent].children == nil { db.dirties[parent].children = make(map[common.Hash]uint16) db.childrenSize += cachedNodeChildrenSize } else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) { return } node.parents++ db.dirties[parent].children[child]++ if db.dirties[parent].children[child] == 1 { db.childrenSize += common.HashLength + 2 // uint16 counter } } // Dereference removes an existing reference from a root node. func (db *Database) Dereference(root common.Hash) { // Sanity check to ensure that the meta-root is not removed if root == (common.Hash{}) { log.Error("Attempted to dereference the trie cache meta root") return } db.lock.Lock() defer db.lock.Unlock() nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now() db.dereference(root, common.Hash{}) db.gcnodes += uint64(nodes - len(db.dirties)) db.gcsize += storage - db.dirtiesSize db.gctime += time.Since(start) memcacheGCTimeTimer.Update(time.Since(start)) memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize)) memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties))) log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start), "gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) } // dereference is the private locked version of Dereference. func (db *Database) dereference(child common.Hash, parent common.Hash) { // Dereference the parent-child node := db.dirties[parent] if node.children != nil && node.children[child] > 0 { node.children[child]-- if node.children[child] == 0 { delete(node.children, child) db.childrenSize -= (common.HashLength + 2) // uint16 counter } } // If the child does not exist, it's a previously committed node. node, ok := db.dirties[child] if !ok { return } // If there are no more references to the child, delete it and cascade if node.parents > 0 { // This is a special cornercase where a node loaded from disk (i.e. not in the // memcache any more) gets reinjected as a new node (short node split into full, // then reverted into short), causing a cached node to have no parents. That is // no problem in itself, but don't make maxint parents out of it. node.parents-- } if node.parents == 0 { // Remove the node from the flush-list switch child { case db.oldest: db.oldest = node.flushNext db.dirties[node.flushNext].flushPrev = common.Hash{} case db.newest: db.newest = node.flushPrev db.dirties[node.flushPrev].flushNext = common.Hash{} default: db.dirties[node.flushPrev].flushNext = node.flushNext db.dirties[node.flushNext].flushPrev = node.flushPrev } // Dereference all children and delete the node for _, hash := range node.childs() { db.dereference(hash, child) } delete(db.dirties, child) db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { db.childrenSize -= cachedNodeChildrenSize } } } // Cap iteratively flushes old but still referenced trie nodes until the total // memory usage goes below the given threshold. // // Note, this method is a non-synchronized mutator. It is unsafe to call this // concurrently with other mutators. func (db *Database) Cap(limit common.StorageSize) error { // Intentionally disabled in Turbo-Geth // FIXME: Add more detailed explanation or remove the methid completely return nil } // Commit iterates over all the children of a particular node, writes them out // to disk, forcefully tearing down all references in both directions. As a side // effect, all pre-images accumulated up to this point are also written. // // Note, this method is a non-synchronized mutator. It is unsafe to call this // concurrently with other mutators. func (db *Database) Commit(node common.Hash, report bool) error { // Intentionally disabled in Turbo-Geth // FIXME: Add more detailed explanation or remove the methid completely return nil } // cleaner is a database batch replayer that takes a batch of write operations // and cleans up the trie database from anything written to disk. type cleaner struct { db *Database } // Put reacts to database writes and implements dirty data uncaching. This is the // post-processing step of a commit operation where the already persisted trie is // removed from the dirty cache and moved into the clean cache. The reason behind // the two-phase commit is to ensure ensure data availability while moving from // memory to disk. func (c *cleaner) Put(key []byte, rlp []byte) error { hash := common.BytesToHash(key) // If the node does not exist, we're done on this path node, ok := c.db.dirties[hash] if !ok { return nil } // Node still exists, remove it from the flush-list switch hash { case c.db.oldest: c.db.oldest = node.flushNext c.db.dirties[node.flushNext].flushPrev = common.Hash{} case c.db.newest: c.db.newest = node.flushPrev c.db.dirties[node.flushPrev].flushNext = common.Hash{} default: c.db.dirties[node.flushPrev].flushNext = node.flushNext c.db.dirties[node.flushNext].flushPrev = node.flushPrev } // Remove the node from the dirty cache delete(c.db.dirties, hash) c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) } // Move the flushed node into the clean cache to prevent insta-reloads if c.db.cleans != nil { c.db.cleans.Set(string(hash[:]), rlp) } return nil } func (c *cleaner) Delete(key []byte) error { panic("Not implemented") } // Size returns the current storage size of the memory cache in front of the // persistent database layer. func (db *Database) Size() (common.StorageSize, common.StorageSize) { db.lock.RLock() defer db.lock.RUnlock() // db.dirtiesSize only contains the useful data in the cache, but when reporting // the total memory consumption, the maintenance metadata is also needed to be // counted. var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize) var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2)) return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize } // verifyIntegrity is a debug method to iterate over the entire trie stored in // memory and check whether every node is reachable from the meta root. The goal // is to find any errors that might cause memory leaks and or trie nodes to go // missing. // // This method is extremely CPU and memory intensive, only use when must. func (db *Database) verifyIntegrity() { // Iterate over all the cached nodes and accumulate them into a set reachable := map[common.Hash]struct{}{{}: {}} for child := range db.dirties[common.Hash{}].children { db.accumulate(child, reachable) } // Find any unreachable but cached nodes var unreachable []string for hash, node := range db.dirties { if _, ok := reachable[hash]; !ok { unreachable = append(unreachable, fmt.Sprintf("%x: {Node: %v, Parents: %d, Prev: %x, Next: %x}", hash, node.node, node.parents, node.flushPrev, node.flushNext)) } } if len(unreachable) != 0 { panic(fmt.Sprintf("trie cache memory leak: %v", unreachable)) } } // accumulate iterates over the trie defined by hash and accumulates all the // cached children found in memory. func (db *Database) accumulate(hash common.Hash, reachable map[common.Hash]struct{}) { // Mark the node reachable if present in the memory cache node, ok := db.dirties[hash] if !ok { return } reachable[hash] = struct{}{} // Iterate over all the children and accumulate them too for _, child := range node.childs() { db.accumulate(child, reachable) } }