// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package rlp import ( "bufio" "bytes" "encoding/binary" "errors" "fmt" "io" "math/big" "reflect" "strings" "sync" "github.com/ledgerwatch/log/v3" "github.com/holiman/uint256" ) //lint:ignore ST1012 EOL is not an error. // EOL is returned when the end of the current list // has been reached during streaming. var EOL = errors.New("rlp: end of list") var ( ErrExpectedString = errors.New("rlp: expected String or Byte") ErrExpectedList = errors.New("rlp: expected List") ErrCanonInt = errors.New("rlp: non-canonical integer format") ErrCanonSize = errors.New("rlp: non-canonical size information") ErrElemTooLarge = errors.New("rlp: element is larger than containing list") ErrValueTooLarge = errors.New("rlp: value size exceeds available input length") ErrMoreThanOneValue = errors.New("rlp: input contains more than one value") ErrWrongTxTypePrefix = errors.New("rlp: only 1-byte tx type prefix is supported") ErrUnknownTxTypePrefix = errors.New("rlp: unknown tx type prefix") // internal errors errNotInList = errors.New("rlp: call of ListEnd outside of any list") errNotAtEOL = errors.New("rlp: call of ListEnd not positioned at EOL") errUintOverflow = errors.New("rlp: uint overflow") errNoPointer = errors.New("rlp: interface given to Decode must be a pointer") errDecodeIntoNil = errors.New("rlp: pointer given to Decode must not be nil") streamPool = sync.Pool{ New: func() interface{} { return new(Stream) }, } ) func IsInvalidRLPError(err error) bool { return errors.Is(err, ErrExpectedString) || errors.Is(err, ErrExpectedList) || errors.Is(err, ErrCanonInt) || errors.Is(err, ErrCanonInt) || errors.Is(err, ErrCanonSize) || errors.Is(err, ErrElemTooLarge) || errors.Is(err, ErrValueTooLarge) || errors.Is(err, ErrMoreThanOneValue) || errors.Is(err, ErrWrongTxTypePrefix) || errors.Is(err, ErrUnknownTxTypePrefix) || // internal errors errors.Is(err, errNotInList) || errors.Is(err, errNotAtEOL) || errors.Is(err, errUintOverflow) || // stream errors strings.Contains(err.Error(), "rlp: input list has too many elements") || strings.Contains(err.Error(), "rlp: expected input string or byte") || strings.Contains(err.Error(), "rlp: expected input list") || strings.Contains(err.Error(), "rlp: non-canonical size information") || strings.Contains(err.Error(), "rlp: non-canonical integer (leading zero bytes)") } // Decoder is implemented by types that require custom RLP decoding rules or need to decode // into private fields. // // The DecodeRLP method should read one value from the given Stream. It is not forbidden to // read less or more, but it might be confusing. type Decoder interface { DecodeRLP(*Stream) error } // Decode parses RLP-encoded data from r and stores the result in the value pointed to by // val. Please see package-level documentation for the decoding rules. Val must be a // non-nil pointer. // // If r does not implement ByteReader, Decode will do its own buffering. // // Note that Decode does not set an input limit for all readers and may be vulnerable to // panics cause by huge value sizes. If you need an input limit, use // // NewStream(r, limit).Decode(val) func Decode(r io.Reader, val interface{}) error { stream, ok := streamPool.Get().(*Stream) if !ok { log.Warn("Failed to type convert to Stream pointer") } defer streamPool.Put(stream) stream.Reset(r, 0) return stream.Decode(val) } // DecodeBytes parses RLP data from b into val. Please see package-level documentation for // the decoding rules. The input must contain exactly one value and no trailing data. func DecodeBytes(b []byte, val interface{}) error { r := bytes.NewReader(b) stream, ok := streamPool.Get().(*Stream) if !ok { log.Warn("Failed to type convert to Stream pointer") } defer streamPool.Put(stream) stream.Reset(r, uint64(len(b))) if err := stream.Decode(val); err != nil { return err } if r.Len() > 0 { return ErrMoreThanOneValue } return nil } type decodeError struct { msg string typ reflect.Type ctx []string } func (err *decodeError) Error() string { ctx := "" if len(err.ctx) > 0 { ctx = ", decoding into " for i := len(err.ctx) - 1; i >= 0; i-- { ctx += err.ctx[i] } } return fmt.Sprintf("rlp: %s for %v%s", err.msg, err.typ, ctx) } func wrapStreamError(err error, typ reflect.Type) error { switch err { case ErrCanonInt: return &decodeError{msg: "non-canonical integer (leading zero bytes)", typ: typ} case ErrCanonSize: return &decodeError{msg: "non-canonical size information", typ: typ} case ErrExpectedList: return &decodeError{msg: "expected input list", typ: typ} case ErrExpectedString: return &decodeError{msg: "expected input string or byte", typ: typ} case errUintOverflow: return &decodeError{msg: "input string too long", typ: typ} case errNotAtEOL: return &decodeError{msg: "input list has too many elements", typ: typ} } return err } func addErrorContext(err error, ctx string) error { if decErr, ok := err.(*decodeError); ok { decErr.ctx = append(decErr.ctx, ctx) } return err } var ( decoderInterface = reflect.TypeOf(new(Decoder)).Elem() bigInt = reflect.TypeOf(big.Int{}) uint256Int = reflect.TypeOf(uint256.Int{}) ) func makeDecoder(typ reflect.Type, tags tags) (dec decoder, err error) { kind := typ.Kind() switch { case typ == rawValueType: return decodeRawValue, nil case typ.AssignableTo(reflect.PtrTo(bigInt)): return decodeBigInt, nil case typ.AssignableTo(bigInt): return decodeBigIntNoPtr, nil case typ.AssignableTo(reflect.PtrTo(uint256Int)): return decodeUint256, nil case typ.AssignableTo(uint256Int): return decodeUint256NoPtr, nil case kind == reflect.Ptr: return makePtrDecoder(typ, tags) case reflect.PtrTo(typ).Implements(decoderInterface): return decodeDecoder, nil case isUint(kind): return decodeUint, nil case kind == reflect.Bool: return decodeBool, nil case kind == reflect.String: return decodeString, nil case kind == reflect.Slice || kind == reflect.Array: return makeListDecoder(typ, tags) case kind == reflect.Struct: return makeStructDecoder(typ) case kind == reflect.Interface: return decodeInterface, nil default: return nil, fmt.Errorf("rlp: type %v is not RLP-serializable", typ) } } func decodeRawValue(s *Stream, val reflect.Value) error { r, err := s.Raw() if err != nil { return err } val.SetBytes(r) return nil } func decodeUint(s *Stream, val reflect.Value) error { typ := val.Type() num, err := s.uint(typ.Bits()) if err != nil { return wrapStreamError(err, val.Type()) } val.SetUint(num) return nil } func decodeBool(s *Stream, val reflect.Value) error { b, err := s.Bool() if err != nil { return wrapStreamError(err, val.Type()) } val.SetBool(b) return nil } func decodeString(s *Stream, val reflect.Value) error { b, err := s.Bytes() if err != nil { return wrapStreamError(err, val.Type()) } val.SetString(string(b)) return nil } func decodeBigIntNoPtr(s *Stream, val reflect.Value) error { return decodeBigInt(s, val.Addr()) } func decodeBigInt(s *Stream, val reflect.Value) error { b, err := s.bigIntBytes() if err != nil { return wrapStreamError(err, val.Type()) } // Set the integer bytes. i := val.Interface().(*big.Int) if i == nil { i = new(big.Int) val.Set(reflect.ValueOf(i)) } i.SetBytes(b) return nil } func decodeUint256NoPtr(s *Stream, val reflect.Value) error { return decodeUint256(s, val.Addr()) } func decodeUint256(s *Stream, val reflect.Value) error { b, err := s.Uint256Bytes() if err != nil { return wrapStreamError(err, val.Type()) } // Set the integer bytes. i := val.Interface().(*uint256.Int) if i == nil { i = new(uint256.Int) val.Set(reflect.ValueOf(i)) } i.SetBytes(b) return nil } func makeListDecoder(typ reflect.Type, tag tags) (decoder, error) { etype := typ.Elem() if etype.Kind() == reflect.Uint8 && !reflect.PtrTo(etype).Implements(decoderInterface) { if typ.Kind() == reflect.Array { return decodeByteArray, nil } return decodeByteSlice, nil } etypeinfo := cachedTypeInfo1(etype, tags{}) if etypeinfo.decoderErr != nil { return nil, etypeinfo.decoderErr } var dec decoder switch { case typ.Kind() == reflect.Array: dec = func(s *Stream, val reflect.Value) error { return decodeListArray(s, val, etypeinfo.decoder) } case tag.tail: // A slice with "tail" tag can occur as the last field // of a struct and is supposed to swallow all remaining // list elements. The struct decoder already called s.List, // proceed directly to decoding the elements. dec = func(s *Stream, val reflect.Value) error { return decodeSliceElems(s, val, etypeinfo.decoder) } default: dec = func(s *Stream, val reflect.Value) error { return decodeListSlice(s, val, etypeinfo.decoder) } } return dec, nil } func decodeListSlice(s *Stream, val reflect.Value, elemdec decoder) error { size, err := s.List() if err != nil { return wrapStreamError(err, val.Type()) } if size == 0 { val.Set(reflect.MakeSlice(val.Type(), 0, 0)) return s.ListEnd() } if err := decodeSliceElems(s, val, elemdec); err != nil { return err } return s.ListEnd() } func decodeSliceElems(s *Stream, val reflect.Value, elemdec decoder) error { i := 0 for ; ; i++ { // grow slice if necessary if i >= val.Cap() { newcap := val.Cap() + val.Cap()/2 if newcap < 4 { newcap = 4 } newv := reflect.MakeSlice(val.Type(), val.Len(), newcap) reflect.Copy(newv, val) val.Set(newv) } if i >= val.Len() { val.SetLen(i + 1) } // decode into element if err := elemdec(s, val.Index(i)); err == EOL { break } else if err != nil { return addErrorContext(err, fmt.Sprint("[", i, "]")) } } if i < val.Len() { val.SetLen(i) } return nil } func decodeListArray(s *Stream, val reflect.Value, elemdec decoder) error { if _, err := s.List(); err != nil { return wrapStreamError(err, val.Type()) } vlen := val.Len() i := 0 for ; i < vlen; i++ { if err := elemdec(s, val.Index(i)); err == EOL { break } else if err != nil { return addErrorContext(err, fmt.Sprint("[", i, "]")) } } if i < vlen { return &decodeError{msg: "input list has too few elements", typ: val.Type()} } return wrapStreamError(s.ListEnd(), val.Type()) } func decodeByteSlice(s *Stream, val reflect.Value) error { b, err := s.Bytes() if err != nil { return wrapStreamError(err, val.Type()) } val.SetBytes(b) return nil } func decodeByteArray(s *Stream, val reflect.Value) error { kind, size, err := s.Kind() if err != nil { return err } vlen := val.Len() switch kind { case Byte: if vlen == 0 { return &decodeError{msg: "input string too long", typ: val.Type()} } if vlen > 1 { return &decodeError{msg: "input string too short", typ: val.Type()} } bv, _ := s.Uint() val.Index(0).SetUint(bv) case String: if uint64(vlen) < size { return &decodeError{msg: "input string too long", typ: val.Type()} } if uint64(vlen) > size { return &decodeError{msg: "input string too short", typ: val.Type()} } slice := val.Slice(0, vlen).Interface().([]byte) if err := s.readFull(slice); err != nil { return err } // Reject cases where single byte encoding should have been used. if size == 1 && slice[0] < 128 { return wrapStreamError(ErrCanonSize, val.Type()) } case List: return wrapStreamError(ErrExpectedString, val.Type()) } return nil } func makeStructDecoder(typ reflect.Type) (decoder, error) { fields, err := structFields(typ) if err != nil { return nil, err } for _, f := range fields { if f.info.decoderErr != nil { return nil, structFieldError{typ, f.index, f.info.decoderErr} } } dec := func(s *Stream, val reflect.Value) (err error) { if _, err := s.List(); err != nil { return wrapStreamError(err, typ) } for i, f := range fields { err := f.info.decoder(s, val.Field(f.index)) if err == EOL { if f.optional { // The field is optional, so reaching the end of the list before // reaching the last field is acceptable. All remaining undecoded // fields are zeroed. zeroFields(val, fields[i:]) break } return &decodeError{msg: "too few elements", typ: typ} } else if err != nil { return addErrorContext(err, "."+typ.Field(f.index).Name) } } return wrapStreamError(s.ListEnd(), typ) } return dec, nil } func zeroFields(structval reflect.Value, fields []field) { for _, f := range fields { fv := structval.Field(f.index) fv.Set(reflect.Zero(fv.Type())) } } // makePtrDecoder creates a decoder that decodes into the pointer's element type. func makePtrDecoder(typ reflect.Type, tag tags) (decoder, error) { etype := typ.Elem() etypeinfo := cachedTypeInfo1(etype, tags{}) switch { case etypeinfo.decoderErr != nil: return nil, etypeinfo.decoderErr case !tag.nilOK: return makeSimplePtrDecoder(etype, etypeinfo), nil default: return makeNilPtrDecoder(etype, etypeinfo, tag.nilKind), nil } } func makeSimplePtrDecoder(etype reflect.Type, etypeinfo *typeinfo) decoder { return func(s *Stream, val reflect.Value) (err error) { newval := val if val.IsNil() { newval = reflect.New(etype) } if err = etypeinfo.decoder(s, newval.Elem()); err == nil { val.Set(newval) } return err } } // makeNilPtrDecoder creates a decoder that decodes empty values as nil. Non-empty // values are decoded into a value of the element type, just like makePtrDecoder does. // // This decoder is used for pointer-typed struct fields with struct tag "nil". func makeNilPtrDecoder(etype reflect.Type, etypeinfo *typeinfo, nilKind Kind) decoder { typ := reflect.PtrTo(etype) nilPtr := reflect.Zero(typ) return func(s *Stream, val reflect.Value) (err error) { kind, size, err := s.Kind() if err != nil { val.Set(nilPtr) return wrapStreamError(err, typ) } // Handle empty values as a nil pointer. if kind != Byte && size == 0 { if kind != nilKind { return &decodeError{ msg: fmt.Sprintf("wrong kind of empty value (got %v, want %v)", kind, nilKind), typ: typ, } } // rearm s.Kind. This is important because the input // position must advance to the next value even though // we don't read anything. s.kind = -1 val.Set(nilPtr) return nil } newval := val if val.IsNil() { newval = reflect.New(etype) } if err = etypeinfo.decoder(s, newval.Elem()); err == nil { val.Set(newval) } return err } } var ifsliceType = reflect.TypeOf([]interface{}{}) func decodeInterface(s *Stream, val reflect.Value) error { if val.Type().NumMethod() != 0 { return fmt.Errorf("rlp: type %v is not RLP-serializable", val.Type()) } kind, _, err := s.Kind() if err != nil { return err } if kind == List { slice := reflect.New(ifsliceType).Elem() if err := decodeListSlice(s, slice, decodeInterface); err != nil { return err } val.Set(slice) } else { b, err := s.Bytes() if err != nil { return err } val.Set(reflect.ValueOf(b)) } return nil } func decodeDecoder(s *Stream, val reflect.Value) error { return val.Addr().Interface().(Decoder).DecodeRLP(s) } // Kind represents the kind of value contained in an RLP stream. type Kind int const ( Byte Kind = iota String List ) func (k Kind) String() string { switch k { case Byte: return "Byte" case String: return "String" case List: return "List" default: return fmt.Sprintf("Unknown(%d)", k) } } // ByteReader must be implemented by any input reader for a Stream. It // is implemented by e.g. bufio.Reader and bytes.Reader. type ByteReader interface { io.Reader io.ByteReader } // Stream can be used for piecemeal decoding of an input stream. This // is useful if the input is very large or if the decoding rules for a // type depend on the input structure. Stream does not keep an // internal buffer. After decoding a value, the input reader will be // positioned just before the type information for the next value. // // When decoding a list and the input position reaches the declared // length of the list, all operations will return error EOL. // The end of the list must be acknowledged using ListEnd to continue // reading the enclosing list. // // Stream is not safe for concurrent use. type Stream struct { r ByteReader // number of bytes remaining to be read from r. remaining uint64 limited bool // auxiliary buffer for integer decoding uintbuf [32]byte kind Kind // kind of value ahead size uint64 // size of value ahead byteval byte // value of single byte in type tag kinderr error // error from last readKind stack []listpos } type listpos struct{ pos, size uint64 } // NewStream creates a new decoding stream reading from r. // // If r implements the ByteReader interface, Stream will // not introduce any buffering. // // For non-toplevel values, Stream returns ErrElemTooLarge // for values that do not fit into the enclosing list. // // Stream supports an optional input limit. If a limit is set, the // size of any toplevel value will be checked against the remaining // input length. Stream operations that encounter a value exceeding // the remaining input length will return ErrValueTooLarge. The limit // can be set by passing a non-zero value for inputLimit. // // If r is a bytes.Reader or strings.Reader, the input limit is set to // the length of r's underlying data unless an explicit limit is // provided. func NewStream(r io.Reader, inputLimit uint64) *Stream { s := new(Stream) s.Reset(r, inputLimit) return s } // NewListStream creates a new stream that pretends to be positioned // at an encoded list of the given length. func NewListStream(r io.Reader, len uint64) *Stream { s := new(Stream) s.Reset(r, len) s.kind = List s.size = len return s } // Bytes reads an RLP string and returns its contents as a byte slice. // If the input does not contain an RLP string, the returned // error will be ErrExpectedString. func (s *Stream) Bytes() ([]byte, error) { kind, size, err := s.Kind() if err != nil { return nil, err } switch kind { case Byte: s.kind = -1 // rearm Kind return []byte{s.byteval}, nil case String: b := make([]byte, size) if err = s.readFull(b); err != nil { return nil, err } if size == 1 && b[0] < 128 { return nil, ErrCanonSize } return b, nil default: return nil, ErrExpectedString } } // Raw reads a raw encoded value including RLP type information. func (s *Stream) Raw() ([]byte, error) { kind, size, err := s.Kind() if err != nil { return nil, err } if kind == Byte { s.kind = -1 // rearm Kind return []byte{s.byteval}, nil } // the original header has already been read and is no longer // available. read content and put a new header in front of it. start := headsize(size) buf := make([]byte, uint64(start)+size) if err := s.readFull(buf[start:]); err != nil { return nil, err } if kind == String { puthead(buf, 0x80, 0xB7, size) } else { puthead(buf, 0xC0, 0xF7, size) } return buf, nil } // Uint reads an RLP string of up to 8 bytes and returns its contents // as an unsigned integer. If the input does not contain an RLP string, the // returned error will be ErrExpectedString. func (s *Stream) Uint() (uint64, error) { return s.uint(64) } func (s *Stream) uint(maxbits int) (uint64, error) { kind, size, err := s.Kind() if err != nil { return 0, err } switch kind { case Byte: if s.byteval == 0 { return 0, ErrCanonInt } s.kind = -1 // rearm Kind return uint64(s.byteval), nil case String: if size > uint64(maxbits/8) { return 0, errUintOverflow } v, err := s.readUint(byte(size)) switch { case err == ErrCanonSize: // Adjust error because we're not reading a size right now. return 0, ErrCanonInt case err != nil: return 0, err case size > 0 && v < 128: return 0, ErrCanonSize default: return v, nil } default: return 0, ErrExpectedString } } func (s *Stream) Uint256Bytes() ([]byte, error) { b, err := s.bigIntBytes() if err != nil { return nil, err } if len(b) > 32 { return nil, errUintOverflow } return b, nil } func (s *Stream) bigIntBytes() ([]byte, error) { var buffer []byte kind, size, err := s.Kind() switch { case err != nil: return nil, err case kind == List: return nil, ErrExpectedString case kind == Byte: buffer = s.uintbuf[:1] buffer[0] = s.byteval s.kind = -1 // re-arm Kind case size == 0: // Avoid zero-length read. s.kind = -1 case size <= uint64(len(s.uintbuf)): // For integers smaller than s.uintbuf, allocating a buffer // can be avoided. buffer = s.uintbuf[:size] if err := s.readFull(buffer); err != nil { return nil, err } // Reject inputs where single byte encoding should have been used. if size == 1 && buffer[0] < 128 { return nil, ErrCanonSize } default: // For large integers, a temporary buffer is needed. buffer = make([]byte, size) if err := s.readFull(buffer); err != nil { return nil, err } } // Reject leading zero bytes. if len(buffer) > 0 && buffer[0] == 0 { return nil, ErrCanonInt } return buffer, nil } // Bool reads an RLP string of up to 1 byte and returns its contents // as a boolean. If the input does not contain an RLP string, the // returned error will be ErrExpectedString. func (s *Stream) Bool() (bool, error) { num, err := s.uint(8) if err != nil { return false, err } switch num { case 0: return false, nil case 1: return true, nil default: return false, fmt.Errorf("rlp: invalid boolean value: %d", num) } } // List starts decoding an RLP list. If the input does not contain a // list, the returned error will be ErrExpectedList. When the list's // end has been reached, any Stream operation will return EOL. func (s *Stream) List() (size uint64, err error) { kind, size, err := s.Kind() if err != nil { return 0, err } if kind != List { return 0, ErrExpectedList } s.NewList(size) return size, nil } // NewList starts decoding an RLP list, but without reading its prefix func (s *Stream) NewList(size uint64) { s.stack = append(s.stack, listpos{0, size}) s.kind = -1 s.size = 0 } // ListEnd returns to the enclosing list. // The input reader must be positioned at the end of a list. func (s *Stream) ListEnd() error { if len(s.stack) == 0 { return errNotInList } tos := s.stack[len(s.stack)-1] if tos.pos != tos.size { return errNotAtEOL } s.stack = s.stack[:len(s.stack)-1] // pop if len(s.stack) > 0 { s.stack[len(s.stack)-1].pos += tos.size } s.kind = -1 s.size = 0 return nil } // Decode decodes a value and stores the result in the value pointed // to by val. Please see the documentation for the Decode function // to learn about the decoding rules. func (s *Stream) Decode(val interface{}) error { if val == nil { return errDecodeIntoNil } rval := reflect.ValueOf(val) rtyp := rval.Type() if rtyp.Kind() != reflect.Ptr { return errNoPointer } if rval.IsNil() { return errDecodeIntoNil } dcd, err := cachedDecoder(rtyp.Elem()) if err != nil { return err } err = dcd(s, rval.Elem()) if decErr, ok := err.(*decodeError); ok && len(decErr.ctx) > 0 { // add decode target type to error so context has more meaning decErr.ctx = append(decErr.ctx, fmt.Sprint("(", rtyp.Elem(), ")")) } return err } // Reset discards any information about the current decoding context // and starts reading from r. This method is meant to facilitate reuse // of a preallocated Stream across many decoding operations. // // If r does not also implement ByteReader, Stream will do its own // buffering. func (s *Stream) Reset(r io.Reader, inputLimit uint64) { if inputLimit > 0 { s.remaining = inputLimit s.limited = true } else { // Attempt to automatically discover // the limit when reading from a byte slice. switch br := r.(type) { case *bytes.Reader: s.remaining = uint64(br.Len()) s.limited = true case *strings.Reader: s.remaining = uint64(br.Len()) s.limited = true default: s.limited = false } } // Wrap r with a buffer if it doesn't have one. bufr, ok := r.(ByteReader) if !ok { bufr = bufio.NewReader(r) } s.r = bufr // Reset the decoding context. s.stack = s.stack[:0] s.size = 0 s.kind = -1 s.kinderr = nil s.uintbuf = [32]byte{} s.byteval = 0 } // Kind returns the kind and size of the next value in the // input stream. // // The returned size is the number of bytes that make up the value. // For kind == Byte, the size is zero because the value is // contained in the type tag. // // The first call to Kind will read size information from the input // reader and leave it positioned at the start of the actual bytes of // the value. Subsequent calls to Kind (until the value is decoded) // will not advance the input reader and return cached information. func (s *Stream) Kind() (kind Kind, size uint64, err error) { var tos *listpos if len(s.stack) > 0 { tos = &s.stack[len(s.stack)-1] } if s.kind < 0 { s.kinderr = nil // Don't read further if we're at the end of the // innermost list. if tos != nil && tos.pos == tos.size { return 0, 0, EOL } s.kind, s.size, s.kinderr = s.readKind() if s.kinderr == nil { if tos == nil { // At toplevel, check that the value is smaller // than the remaining input length. if s.limited && s.size > s.remaining { s.kinderr = ErrValueTooLarge } } else { // Inside a list, check that the value doesn't overflow the list. if s.size > tos.size-tos.pos { s.kinderr = ErrElemTooLarge } } } } // Note: this might return a sticky error generated // by an earlier call to readKind. return s.kind, s.size, s.kinderr } func (s *Stream) readKind() (kind Kind, size uint64, err error) { b, err := s.readByte() if err != nil { if len(s.stack) == 0 { // At toplevel, Adjust the error to actual EOF. io.EOF is // used by callers to determine when to stop decoding. switch err { case io.ErrUnexpectedEOF: err = io.EOF case ErrValueTooLarge: err = io.EOF } } return 0, 0, err } s.byteval = 0 switch { case b < 0x80: //128 // For a single byte whose value is in the [0x00, 0x7F] range, that byte // is its own RLP encoding. s.byteval = b return Byte, 0, nil case b < 0xB8: //184 // Otherwise, if a string is 0-55 bytes long, // the RLP encoding consists of a single byte with value 0x80 plus the // length of the string followed by the string. The range of the first // byte is thus [0x80, 0xB7]. return String, uint64(b - 0x80), nil case b < 0xC0: //192 // If a string is more than 55 bytes long, the // RLP encoding consists of a single byte with value 0xB7 plus the length // of the length of the string in binary form, followed by the length of // the string, followed by the string. For example, a length-1024 string // would be encoded as 0xB90400 followed by the string. The range of // the first byte is thus [0xB8, 0xBF]. size, err = s.readUint(b - 0xB7) if err == nil && size < 56 { err = ErrCanonSize } return String, size, err case b < 0xF8: //248 // If the total payload of a list // (i.e. the combined length of all its items) is 0-55 bytes long, the // RLP encoding consists of a single byte with value 0xC0 plus the length // of the list followed by the concatenation of the RLP encodings of the // items. The range of the first byte is thus [0xC0, 0xF7]. return List, uint64(b - 0xC0), nil default: // If the total payload of a list is more than 55 bytes long, // the RLP encoding consists of a single byte with value 0xF7 // plus the length of the length of the payload in binary // form, followed by the length of the payload, followed by // the concatenation of the RLP encodings of the items. The // range of the first byte is thus [0xF8, 0xFF]. size, err = s.readUint(b - 0xF7) //247 if err == nil && size < 56 { err = ErrCanonSize } return List, size, err } } func (s *Stream) readUint(size byte) (uint64, error) { switch size { case 0: s.kind = -1 // rearm Kind return 0, nil case 1: b, err := s.readByte() return uint64(b), err default: buffer := s.uintbuf[:8] for i := range buffer { buffer[i] = 0 } start := int(8 - size) if err := s.readFull(buffer[start:]); err != nil { return 0, err } if buffer[start] == 0 { // Note: readUint is also used to decode integer values. // The error needs to be adjusted to become ErrCanonInt in this case. return 0, ErrCanonSize } return binary.BigEndian.Uint64(buffer), nil } } func (s *Stream) readFull(buf []byte) (err error) { if e := s.willRead(uint64(len(buf))); e != nil { return e } var nn, n int for n < len(buf) && err == nil { nn, err = s.r.Read(buf[n:]) n += nn } if errors.Is(err, io.EOF) { if n < len(buf) { err = io.ErrUnexpectedEOF } else { // Readers are allowed to give EOF even though the read succeeded. // In such cases, we discard the EOF, like io.ReadFull() does. err = nil } } return err } func (s *Stream) readByte() (byte, error) { if err := s.willRead(1); err != nil { return 0, err } b, err := s.r.ReadByte() if errors.Is(err, io.EOF) { err = io.ErrUnexpectedEOF } return b, err } func (s *Stream) willRead(n uint64) error { s.kind = -1 // rearm Kind if len(s.stack) > 0 { // check list overflow tos := s.stack[len(s.stack)-1] if n > tos.size-tos.pos { return ErrElemTooLarge } s.stack[len(s.stack)-1].pos += n } if s.limited { if n > s.remaining { return ErrValueTooLarge } s.remaining -= n } return nil }