// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693 // and the extendable output function (XOF) BLAKE2Xb. // // For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf // and for BLAKE2Xb see https://blake2.net/blake2x.pdf // // If you aren't sure which function you need, use BLAKE2b (Sum512 or New512). // If you need a secret-key MAC (message authentication code), use the New512 // function with a non-nil key. // // BLAKE2X is a construction to compute hash values larger than 64 bytes. It // can produce hash values between 0 and 4 GiB. package blake2b import ( "encoding/binary" "errors" "hash" ) const ( // The blocksize of BLAKE2b in bytes. BlockSize = 128 // The hash size of BLAKE2b-512 in bytes. Size = 64 // The hash size of BLAKE2b-384 in bytes. Size384 = 48 // The hash size of BLAKE2b-256 in bytes. Size256 = 32 ) var ( useAVX2 bool useAVX bool useSSE4 bool ) var ( errKeySize = errors.New("blake2b: invalid key size") errHashSize = errors.New("blake2b: invalid hash size") ) var iv = [8]uint64{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, } // Sum512 returns the BLAKE2b-512 checksum of the data. func Sum512(data []byte) [Size]byte { var sum [Size]byte checkSum(&sum, Size, data) return sum } // Sum384 returns the BLAKE2b-384 checksum of the data. func Sum384(data []byte) [Size384]byte { var sum [Size]byte var sum384 [Size384]byte checkSum(&sum, Size384, data) copy(sum384[:], sum[:Size384]) return sum384 } // Sum256 returns the BLAKE2b-256 checksum of the data. func Sum256(data []byte) [Size256]byte { var sum [Size]byte var sum256 [Size256]byte checkSum(&sum, Size256, data) copy(sum256[:], sum[:Size256]) return sum256 } // New512 returns a new hash.Hash computing the BLAKE2b-512 checksum. A non-nil // key turns the hash into a MAC. The key must be between zero and 64 bytes long. func New512(key []byte) (hash.Hash, error) { return newDigest(Size, key) } // New384 returns a new hash.Hash computing the BLAKE2b-384 checksum. A non-nil // key turns the hash into a MAC. The key must be between zero and 64 bytes long. func New384(key []byte) (hash.Hash, error) { return newDigest(Size384, key) } // New256 returns a new hash.Hash computing the BLAKE2b-256 checksum. A non-nil // key turns the hash into a MAC. The key must be between zero and 64 bytes long. func New256(key []byte) (hash.Hash, error) { return newDigest(Size256, key) } // New returns a new hash.Hash computing the BLAKE2b checksum with a custom length. // A non-nil key turns the hash into a MAC. The key must be between zero and 64 bytes long. // The hash size can be a value between 1 and 64 but it is highly recommended to use // values equal or greater than: // - 32 if BLAKE2b is used as a hash function (The key is zero bytes long). // - 16 if BLAKE2b is used as a MAC function (The key is at least 16 bytes long). // When the key is nil, the returned hash.Hash implements BinaryMarshaler // and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash. func New(size int, key []byte) (hash.Hash, error) { return newDigest(size, key) } // F is a compression function for BLAKE2b. It takes as an argument the state // vector `h`, message block vector `m`, offset counter `t`, final block indicator // flag `f`, and number of rounds `rounds`. The state vector provided as the first // parameter is modified by the function. func F(h *[8]uint64, m [16]uint64, c [2]uint64, final bool, rounds uint32) { var flag uint64 if final { flag = 0xFFFFFFFFFFFFFFFF } f(h, &m, c[0], c[1], flag, uint64(rounds)) } func newDigest(hashSize int, key []byte) (*digest, error) { if hashSize < 1 || hashSize > Size { return nil, errHashSize } if len(key) > Size { return nil, errKeySize } d := &digest{ size: hashSize, keyLen: len(key), } copy(d.key[:], key) d.Reset() return d, nil } func checkSum(sum *[Size]byte, hashSize int, data []byte) { h := iv h[0] ^= uint64(hashSize) | (1 << 16) | (1 << 24) var c [2]uint64 if length := len(data); length > BlockSize { n := length &^ (BlockSize - 1) if length == n { n -= BlockSize } hashBlocks(&h, &c, 0, data[:n]) data = data[n:] } var block [BlockSize]byte offset := copy(block[:], data) remaining := uint64(BlockSize - offset) if c[0] < remaining { c[1]-- } c[0] -= remaining hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:]) for i, v := range h[:(hashSize+7)/8] { binary.LittleEndian.PutUint64(sum[8*i:], v) } } func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) { var m [16]uint64 c0, c1 := c[0], c[1] for i := 0; i < len(blocks); { c0 += BlockSize if c0 < BlockSize { c1++ } for j := range m { m[j] = binary.LittleEndian.Uint64(blocks[i:]) i += 8 } f(h, &m, c0, c1, flag, 12) } c[0], c[1] = c0, c1 } type digest struct { h [8]uint64 c [2]uint64 size int block [BlockSize]byte offset int key [BlockSize]byte keyLen int } const ( magic = "b2b" marshaledSize = len(magic) + 8*8 + 2*8 + 1 + BlockSize + 1 ) func (d *digest) MarshalBinary() ([]byte, error) { if d.keyLen != 0 { return nil, errors.New("crypto/blake2b: cannot marshal MACs") } b := make([]byte, 0, marshaledSize) b = append(b, magic...) for i := 0; i < 8; i++ { b = appendUint64(b, d.h[i]) } b = appendUint64(b, d.c[0]) b = appendUint64(b, d.c[1]) // Maximum value for size is 64 b = append(b, byte(d.size)) b = append(b, d.block[:]...) b = append(b, byte(d.offset)) return b, nil } func (d *digest) UnmarshalBinary(b []byte) error { if len(b) < len(magic) || string(b[:len(magic)]) != magic { return errors.New("crypto/blake2b: invalid hash state identifier") } if len(b) != marshaledSize { return errors.New("crypto/blake2b: invalid hash state size") } b = b[len(magic):] for i := 0; i < 8; i++ { b, d.h[i] = consumeUint64(b) } b, d.c[0] = consumeUint64(b) b, d.c[1] = consumeUint64(b) d.size = int(b[0]) b = b[1:] copy(d.block[:], b[:BlockSize]) b = b[BlockSize:] d.offset = int(b[0]) return nil } func (d *digest) BlockSize() int { return BlockSize } func (d *digest) Size() int { return d.size } func (d *digest) Reset() { d.h = iv d.h[0] ^= uint64(d.size) | (uint64(d.keyLen) << 8) | (1 << 16) | (1 << 24) d.offset, d.c[0], d.c[1] = 0, 0, 0 if d.keyLen > 0 { d.block = d.key d.offset = BlockSize } } func (d *digest) Write(p []byte) (n int, err error) { n = len(p) if d.offset > 0 { remaining := BlockSize - d.offset if n <= remaining { d.offset += copy(d.block[d.offset:], p) return } copy(d.block[d.offset:], p[:remaining]) hashBlocks(&d.h, &d.c, 0, d.block[:]) d.offset = 0 p = p[remaining:] } if length := len(p); length > BlockSize { nn := length &^ (BlockSize - 1) if length == nn { nn -= BlockSize } hashBlocks(&d.h, &d.c, 0, p[:nn]) p = p[nn:] } if len(p) > 0 { d.offset += copy(d.block[:], p) } return } func (d *digest) Sum(sum []byte) []byte { var hash [Size]byte d.finalize(&hash) return append(sum, hash[:d.size]...) } func (d *digest) finalize(hash *[Size]byte) { var block [BlockSize]byte copy(block[:], d.block[:d.offset]) remaining := uint64(BlockSize - d.offset) c := d.c if c[0] < remaining { c[1]-- } c[0] -= remaining h := d.h hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:]) for i, v := range h { binary.LittleEndian.PutUint64(hash[8*i:], v) } } func appendUint64(b []byte, x uint64) []byte { var a [8]byte binary.BigEndian.PutUint64(a[:], x) return append(b, a[:]...) } func consumeUint64(b []byte) ([]byte, uint64) { x := binary.BigEndian.Uint64(b) return b[8:], x }