/* Copyright 2021 Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package compress import ( "encoding/binary" "fmt" "os" "github.com/ledgerwatch/erigon-lib/mmap" ) // Decompressor provides access to the words in a file produced by a compressor type Decompressor struct { compressedFile string f *os.File mmapHandle1 []byte // mmap handle for unix (this is used to close mmap) mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap) data []byte // slice of correct size for the decompressor to work with dict Dictionary posDict Dictionary wordsStart uint64 // Offset of whether the words actually start } func NewDecompressor(compressedFile string) (*Decompressor, error) { d := &Decompressor{ compressedFile: compressedFile, } var err error d.f, err = os.Open(compressedFile) if err != nil { return nil, err } var stat os.FileInfo if stat, err = d.f.Stat(); err != nil { return nil, err } size := int(stat.Size()) if size < 24 { return nil, fmt.Errorf("compressed file is too short") } if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, size); err != nil { return nil, err } d.data = d.mmapHandle1[:size] dictSize := binary.BigEndian.Uint64(d.data[:8]) d.dict.rootOffset = binary.BigEndian.Uint64(d.data[8:16]) d.dict.cutoff = binary.BigEndian.Uint64(d.data[16:24]) d.dict.data = d.data[24 : 24+dictSize] pos := 24 + dictSize dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8]) d.posDict.rootOffset = binary.BigEndian.Uint64(d.data[pos+8 : pos+16]) d.posDict.cutoff = binary.BigEndian.Uint64(d.data[pos+16 : pos+24]) d.posDict.data = d.data[pos+24 : pos+24+dictSize] d.wordsStart = pos + 24 + dictSize return d, nil } func (d *Decompressor) Close() error { if err := mmap.Munmap(d.mmapHandle1, d.mmapHandle2); err != nil { return err } if err := d.f.Close(); err != nil { return err } return nil } type Dictionary struct { data []byte rootOffset uint64 cutoff uint64 } type Getter struct { data []byte dataP uint64 patternDict *Dictionary posDict *Dictionary offset uint64 b byte mask byte uncovered []int // Buffer for uncovered portions of the word word []byte } func (g *Getter) zero() bool { g.offset, _ = binary.Uvarint(g.patternDict.data[g.offset:]) return g.offset < g.patternDict.cutoff } func (g *Getter) one() bool { _, n := binary.Uvarint(g.patternDict.data[g.offset:]) g.offset, _ = binary.Uvarint(g.patternDict.data[g.offset+uint64(n):]) return g.offset < g.patternDict.cutoff } func (g *Getter) posZero() bool { g.offset, _ = binary.Uvarint(g.posDict.data[g.offset:]) return g.offset < g.posDict.cutoff } func (g *Getter) posOne() bool { _, n := binary.Uvarint(g.posDict.data[g.offset:]) g.offset, _ = binary.Uvarint(g.posDict.data[g.offset+uint64(n):]) return g.offset < g.posDict.cutoff } func (g *Getter) pattern() []byte { l, n := binary.Uvarint(g.patternDict.data[g.offset:]) return g.patternDict.data[g.offset+uint64(n) : g.offset+uint64(n)+l] } func (g *Getter) pos() uint64 { pos, _ := binary.Uvarint(g.posDict.data[g.offset:]) return pos } func (g *Getter) nextPos(clean bool) uint64 { if clean { g.mask = 0 } g.offset = g.posDict.rootOffset if g.offset < g.posDict.cutoff { return g.pos() } for { if g.mask == 0 { g.mask = 1 g.b = g.data[g.dataP] g.dataP++ } if g.b&g.mask == 0 { g.mask <<= 1 if g.posZero() { break } } else { g.mask <<= 1 if g.posOne() { break } } } return g.pos() } func (g *Getter) nextPattern() []byte { g.offset = g.patternDict.rootOffset if g.offset < g.patternDict.cutoff { return g.pattern() } for { if g.mask == 0 { g.mask = 1 g.b = g.data[g.dataP] g.dataP++ } if g.b&g.mask == 0 { g.mask <<= 1 if g.zero() { break } } else { g.mask <<= 1 if g.one() { break } } } return g.pattern() } // MakeGetter creates an object that can be used to access words in the decompressor's file // Getter is not thread-safe, but there can be multiple getters used simultaneously and concrently // for the same decompressor func (d *Decompressor) MakeGetter() *Getter { return &Getter{patternDict: &d.dict, posDict: &d.posDict, data: d.data[d.wordsStart:], uncovered: make([]int, 0, 128)} } func (g *Getter) Reset(offset uint64) { g.dataP = offset } func (g *Getter) HasNext() bool { return g.dataP < uint64(len(g.data)) } // Next extracts a compressed word from current offset in the file // and appends it to the given buf, returning the result of appending // After extracting next word, it moves to the beginning of the next one func (g *Getter) Next(buf []byte) ([]byte, uint64) { l := g.nextPos(true) l-- // because when create huffman tree we do ++ , because 0 is terminator if l == 0 { return buf, g.dataP } if int(l) > len(g.word) { g.word = make([]byte, l) } var pos uint64 var lastPos int var lastUncovered int g.uncovered = g.uncovered[:0] for pos = g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { intPos := lastPos + int(pos) - 1 lastPos = intPos pattern := g.nextPattern() copy(g.word[intPos:], pattern) if intPos > lastUncovered { g.uncovered = append(g.uncovered, lastUncovered, intPos) } lastUncovered = intPos + len(pattern) } if int(l) > lastUncovered { g.uncovered = append(g.uncovered, lastUncovered, int(l)) } // Uncovered characters for i := 0; i < len(g.uncovered); i += 2 { copy(g.word[g.uncovered[i]:g.uncovered[i+1]], g.data[g.dataP:]) g.dataP += uint64(g.uncovered[i+1] - g.uncovered[i]) } buf = append(buf, g.word[:l]...) return buf, g.dataP }