// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . //nolint:errcheck,prealloc package core import ( "context" "fmt" "math/big" "testing" "golang.org/x/crypto/sha3" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/u256" "github.com/ledgerwatch/turbo-geth/consensus/ethash" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/params" "github.com/ledgerwatch/turbo-geth/rlp" ) func getBlock(transactions int, uncles int, dataSize int) *types.Block { db := ethdb.NewMemDatabase() defer db.Close() var ( aa = common.HexToAddress("0x000000000000000000000000000000000000aaaa") // Generate a canonical chain to act as the main dataset engine = ethash.NewFaker() // A sender who makes transactions, has some funds key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") address = crypto.PubkeyToAddress(key.PublicKey) funds = big.NewInt(1000000000) gspec = &Genesis{ Config: params.TestChainConfig, Alloc: GenesisAlloc{address: {Balance: funds}}, } genesis = gspec.MustCommit(db) ) // We need to generate as many blocks +1 as uncles blocks, _ := GenerateChain(context.Background(), params.TestChainConfig, genesis, engine, db, uncles+1, func(n int, b *BlockGen) { if n == uncles { // Add transactions and stuff on the last block for i := 0; i < transactions; i++ { tx, _ := types.SignTx(types.NewTransaction(uint64(i), aa, u256.Num0, 50000, u256.Num1, make([]byte, dataSize)), types.HomesteadSigner{}, key) b.AddTx(tx) } for i := 0; i < uncles; i++ { b.AddUncle(&types.Header{ParentHash: b.PrevBlock(n - 1 - i).Hash(), Number: big.NewInt(int64(n - i))}) } } }) block := blocks[len(blocks)-1] return block } // TestRlpIterator tests that individual transactions can be picked out // from blocks without full unmarshalling/marshalling func TestRlpIterator(t *testing.T) { for _, tt := range []struct { txs int uncles int datasize int }{ {0, 0, 0}, {0, 2, 0}, {10, 0, 0}, {10, 2, 0}, {10, 2, 50}, } { testRlpIterator(t, tt.txs, tt.uncles, tt.datasize) } } func testRlpIterator(t *testing.T, txs, uncles, datasize int) { desc := fmt.Sprintf("%d txs [%d datasize] and %d uncles", txs, datasize, uncles) bodyRlp, _ := rlp.EncodeToBytes(getBlock(txs, uncles, datasize).Body()) it, err := rlp.NewListIterator(bodyRlp) if err != nil { t.Fatal(err) } // Check that txs exist if !it.Next() { t.Fatal("expected two elems, got zero") } txdata := it.Value() // Check that senders exist (turbo-geth specific) if !it.Next() { t.Fatal("expected three elems, got one") } // Check that uncles exist if !it.Next() { t.Fatal("expected three elems, got two") } // No more after that if it.Next() { t.Fatal("expected only three elems, got more") } txIt, err := rlp.NewListIterator(txdata) if err != nil { t.Fatal(err) } var gotHashes []common.Hash var expHashes []common.Hash for txIt.Next() { gotHashes = append(gotHashes, crypto.Keccak256Hash(txIt.Value())) } var expBody types.Body err = rlp.DecodeBytes(bodyRlp, &expBody) if err != nil { t.Fatal(err) } for _, tx := range expBody.Transactions { expHashes = append(expHashes, tx.Hash()) } if gotLen, expLen := len(gotHashes), len(expHashes); gotLen != expLen { t.Fatalf("testcase %v: length wrong, got %d exp %d", desc, gotLen, expLen) } // also sanity check against input if gotLen := len(gotHashes); gotLen != txs { t.Fatalf("testcase %v: length wrong, got %d exp %d", desc, gotLen, txs) } for i, got := range gotHashes { if exp := expHashes[i]; got != exp { t.Errorf("testcase %v: hash wrong, got %x, exp %x", desc, got, exp) } } } // BenchmarkHashing compares the speeds of hashing a rlp raw data directly // without the unmarshalling/marshalling step func BenchmarkHashing(b *testing.B) { // Make a pretty fat block var ( bodyRlp []byte blockRlp []byte ) { block := getBlock(200, 2, 50) bodyRlp, _ = rlp.EncodeToBytes(block.Body()) blockRlp, _ = rlp.EncodeToBytes(block) } var got common.Hash var hasher = sha3.NewLegacyKeccak256() b.Run("iteratorhashing", func(b *testing.B) { b.ResetTimer() for i := 0; i < b.N; i++ { var hash common.Hash it, err := rlp.NewListIterator(bodyRlp) if err != nil { b.Fatal(err) } it.Next() txs := it.Value() txIt, err := rlp.NewListIterator(txs) if err != nil { b.Fatal(err) } for txIt.Next() { hasher.Reset() hasher.Write(txIt.Value()) hasher.Sum(hash[:0]) got = hash } } }) var exp common.Hash b.Run("fullbodyhashing", func(b *testing.B) { b.ResetTimer() for i := 0; i < b.N; i++ { var body types.Body rlp.DecodeBytes(bodyRlp, &body) for _, tx := range body.Transactions { exp = tx.Hash() } } }) b.Run("fullblockhashing", func(b *testing.B) { b.ResetTimer() for i := 0; i < b.N; i++ { var block types.Block rlp.DecodeBytes(blockRlp, &block) for _, tx := range block.Transactions() { tx.Hash() } } }) if got != exp { b.Fatalf("hash wrong, got %x exp %x", got, exp) } }