// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // This file contains some shares testing functionality, common to multiple // different files and modules being tested. package eth import ( "context" "crypto/ecdsa" "crypto/rand" "log" "math/big" "sort" "sync" "testing" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/consensus/ethash" "github.com/ledgerwatch/turbo-geth/core" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/core/vm" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/eth/downloader" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/p2p" "github.com/ledgerwatch/turbo-geth/p2p/enode" "github.com/ledgerwatch/turbo-geth/params" ) var ( testBankKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") testBank = crypto.PubkeyToAddress(testBankKey.PublicKey) ) // newTestProtocolManager creates a new protocol manager for testing purposes, // with the given number of blocks already known, and potential notification // channels for different events. func newTestProtocolManager(mode downloader.SyncMode, blocks int, generator func(int, *core.BlockGen), newtx chan<- []*types.Transaction) (*ProtocolManager, ethdb.Database, error) { var ( evmux = new(event.TypeMux) engine = ethash.NewFaker() gspec = &core.Genesis{ Config: params.TestChainConfig, Alloc: core.GenesisAlloc{testBank: {Balance: big.NewInt(1000000)}}, } dbGen = ethdb.NewMemDatabase() // This database is only used to generate the chain, then discarded genesis = gspec.MustCommit(dbGen) ) var chain []*types.Block // Fresh database db := ethdb.NewMemDatabase() // Regenerate genesis block in the fresh database gspec.MustCommit(db) blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil) if err != nil { return nil, nil, err } blockchain.EnableReceipts(true) ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1)) chain, _ = core.GenerateChain(ctx, gspec.Config, genesis, ethash.NewFaker(), dbGen, blocks, generator) if _, err := blockchain.InsertChain(chain); err != nil { return nil, nil, err } cht := ¶ms.TrustedCheckpoint{} pm, err := NewProtocolManager(gspec.Config, cht, mode, DefaultConfig.NetworkID, evmux, &testTxPool{added: newtx}, engine, blockchain, db, nil) if err != nil { return nil, nil, err } pm.Start(1000) return pm, db, nil } // newTestProtocolManagerMust creates a new protocol manager for testing purposes, // with the given number of blocks already known, and potential notification // channels for different events. In case of an error, the constructor force- // fails the test. func newTestProtocolManagerMust(t *testing.T, mode downloader.SyncMode, blocks int, generator func(int, *core.BlockGen), newtx chan<- []*types.Transaction) (*ProtocolManager, ethdb.Database) { pm, db, err := newTestProtocolManager(mode, blocks, generator, newtx) if err != nil { t.Fatalf("Failed to create protocol manager: %v", err) } return pm, db } // testTxPool is a fake, helper transaction pool for testing purposes type testTxPool struct { txFeed event.Feed pool []*types.Transaction // Collection of all transactions added chan<- []*types.Transaction // Notification channel for new transactions lock sync.RWMutex // Protects the transaction pool } // AddRemotes appends a batch of transactions to the pool, and notifies any // listeners if the addition channel is non nil func (p *testTxPool) AddRemotes(txs []*types.Transaction) []error { p.lock.Lock() defer p.lock.Unlock() p.pool = append(p.pool, txs...) if p.added != nil { p.added <- txs } return make([]error, len(txs)) } // Pending returns all the transactions known to the pool func (p *testTxPool) Pending() (map[common.Address]types.Transactions, error) { p.lock.RLock() defer p.lock.RUnlock() batches := make(map[common.Address]types.Transactions) for _, tx := range p.pool { from, _ := types.Sender(types.HomesteadSigner{}, tx) batches[from] = append(batches[from], tx) } for _, batch := range batches { sort.Sort(types.TxByNonce(batch)) } return batches, nil } func (p *testTxPool) SubscribeNewTxsEvent(ch chan<- core.NewTxsEvent) event.Subscription { return p.txFeed.Subscribe(ch) } // newTestTransaction create a new dummy transaction. func newTestTransaction(from *ecdsa.PrivateKey, nonce uint64, datasize int) *types.Transaction { tx := types.NewTransaction(nonce, common.Address{}, big.NewInt(0), 100000, big.NewInt(0), make([]byte, datasize)) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, from) return tx } // testPeer is a simulated peer to allow testing direct network calls. type testPeer struct { net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side *peer } type testFirehosePeer struct { net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side peer *firehosePeer } // newTestPeer creates a new peer registered at the given protocol manager. func newTestPeer(name string, version int, pm *ProtocolManager, shake bool) (*testPeer, <-chan error) { // Create a message pipe to communicate through app, net := p2p.MsgPipe() // Generate a random id and create the peer var id enode.ID rand.Read(id[:]) peer := pm.newPeer(version, p2p.NewPeer(id, name, nil), net) // Start the peer on a new thread errc := make(chan error, 1) go func() { select { case pm.newPeerCh <- peer: errc <- pm.handle(peer) case <-pm.quitSync: errc <- p2p.DiscQuitting } }() tp := &testPeer{app: app, net: net, peer: peer} // Execute any implicitly requested handshakes and return if shake { var ( genesis = pm.blockchain.Genesis() head = pm.blockchain.CurrentHeader() td = pm.blockchain.GetTd(head.Hash(), head.Number.Uint64()) ) tp.handshake(nil, td, head.Hash(), genesis.Hash()) } return tp, errc } func newFirehoseTestPeer(name string, pm *ProtocolManager) (*testFirehosePeer, <-chan error) { // Create a message pipe to communicate through app, net := p2p.MsgPipe() // Generate a random id and create the peer var id enode.ID // #nosec G404 if _, err := rand.Read(id[:]); err != nil { log.Fatal(err) } peer := &firehosePeer{Peer: p2p.NewPeer(id, name, nil), rw: net} // Start the peer on a new thread errc := make(chan error, 1) go func() { select { case <-pm.quitSync: errc <- p2p.DiscQuitting default: errc <- pm.handleFirehose(peer) } }() tp := &testFirehosePeer{app: app, net: net, peer: peer} return tp, errc } // handshake simulates a trivial handshake that expects the same state from the // remote side as we are simulating locally. func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, genesis common.Hash) { msg := &statusData{ ProtocolVersion: uint32(p.version), NetworkID: DefaultConfig.NetworkID, TD: td, CurrentBlock: head, GenesisBlock: genesis, } if err := p2p.ExpectMsg(p.app, StatusMsg, msg); err != nil { t.Fatalf("status recv: %v", err) } if err := p2p.Send(p.app, StatusMsg, msg); err != nil { t.Fatalf("status send: %v", err) } } // close terminates the local side of the peer, notifying the remote protocol // manager of termination. func (p *testPeer) close() { p.app.Close() } func (p *testFirehosePeer) close() { p.app.Close() }