// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "errors" "fmt" "hash" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/pool" "github.com/ledgerwatch/turbo-geth/rlp" "github.com/ledgerwatch/turbo-geth/trie/rlphacks" "golang.org/x/crypto/sha3" ) type hasher struct { sha keccakState valueNodesRlpEncoded bool buffers [1024 * 1024]byte bw *ByteArrayWriter } const rlpPrefixLength = 4 // keccakState wraps sha3.state. In addition to the usual hash methods, it also supports // Read to get a variable amount of data from the hash state. Read is faster than Sum // because it doesn't copy the internal state, but also modifies the internal state. type keccakState interface { hash.Hash Read([]byte) (int, error) } // hashers live in a global db. var hasherPool = make(chan *hasher, 128) func newHasher(valueNodesRlpEncoded bool) *hasher { var h *hasher select { case h = <-hasherPool: default: h = &hasher{ sha: sha3.NewLegacyKeccak256().(keccakState), bw: &ByteArrayWriter{}, } } h.valueNodesRlpEncoded = valueNodesRlpEncoded return h } func returnHasherToPool(h *hasher) { select { case hasherPool <- h: default: fmt.Printf("Allowing hasher to be garbage collected, pool is full\n") } } // hash collapses a node down into a hash node, also returning a copy of the // original node initialized with the computed hash to replace the original one. func (h *hasher) hash(n node, force bool, storeTo []byte) (int, error) { //n.makedirty() return h.hashInternal(n, force, storeTo, 0) } // hash collapses a node down into a hash node, also returning a copy of the // original node initialized with the computed hash to replace the original one. func (h *hasher) hashInternal(n node, force bool, storeTo []byte, bufOffset int) (int, error) { if hn, ok := n.(hashNode); ok { copy(storeTo, hn) return common.HashLength, nil } if !n.dirty() { copy(storeTo, n.hash()) return common.HashLength, nil } // Trie not processed yet or needs storage, walk the children children, err := h.hashChildren(n, bufOffset) if err != nil { return 0, err } hashLen := h.store(children, force, storeTo) if hashLen == common.HashLength { switch n := n.(type) { case *accountNode: n.hashCorrect = true case *duoNode: copy(n.flags.hash[:], storeTo) n.flags.dirty = false case *fullNode: copy(n.flags.hash[:], storeTo) n.flags.dirty = false } } return hashLen, nil } func writeRlpPrefix(buffer []byte, pos int) []byte { serLength := pos - rlpPrefixLength if serLength < 56 { buffer[3] = byte(192 + serLength) return buffer[3:pos] } else if serLength < 256 { // serLength can be encoded as 1 byte buffer[3] = byte(serLength) buffer[2] = byte(247 + 1) return buffer[2:pos] } else if serLength < 65536 { buffer[3] = byte(serLength & 255) buffer[2] = byte(serLength >> 8) buffer[1] = byte(247 + 2) return buffer[1:pos] } else { buffer[3] = byte(serLength & 255) buffer[2] = byte((serLength >> 8) & 255) buffer[1] = byte(serLength >> 16) buffer[0] = byte(247 + 3) return buffer[0:pos] } } // hashChildren replaces the children of a node with their hashes if the encoded // size of the child is larger than a hash, returning the collapsed node as well // as a replacement for the original node with the child hashes cached in. // DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree func (h *hasher) hashChildren(original node, bufOffset int) ([]byte, error) { buffer := h.buffers[bufOffset:] pos := rlpPrefixLength switch n := original.(type) { case *shortNode: // Starting at position 3, to leave space for len prefix // Encode key compactKey := hexToCompact(n.Key) h.bw.Setup(buffer, pos) written, err := rlphacks.EncodeByteArrayAsRlp(compactKey, h.bw) if err != nil { return nil, err } pos += written // Encode value if vn, ok := n.Val.(valueNode); ok { written, err := h.valueNodeToBuffer(vn, buffer, pos) if err != nil { return nil, err } pos += written } else if ac, ok := n.Val.(*accountNode); ok { // Hashing the storage trie if necessary if ac.storage == nil { ac.Root = EmptyRoot } else { _, err := h.hashInternal(ac.storage, true, ac.Root[:], bufOffset+pos) if err != nil { return nil, err } } written, err := h.accountNodeToBuffer(ac, buffer, pos) if err != nil { return nil, err } pos += written } else { written, err := h.hashChild(n.Val, buffer, pos, bufOffset) if err != nil { return nil, err } pos += written } return writeRlpPrefix(buffer, pos), nil case *duoNode: i1, i2 := n.childrenIdx() for i := 0; i < 17; i++ { var child node if i == int(i1) { child = n.child1 } else if i == int(i2) { child = n.child2 } if child != nil { written, err := h.hashChild(child, buffer, pos, bufOffset) if err != nil { return nil, err } pos += written } else { pos += writeEmptyByteArray(buffer, pos) } } return writeRlpPrefix(buffer, pos), nil case *fullNode: // Hash the full node's children, caching the newly hashed subtrees for _, child := range n.Children[:16] { written, err := h.hashChild(child, buffer, pos, bufOffset) if err != nil { return nil, err } pos += written } switch n := n.Children[16].(type) { case *accountNode: written, err := h.accountNodeToBuffer(n, buffer, pos) if err != nil { return nil, err } pos += written case valueNode: written, err := h.valueNodeToBuffer(n, buffer, pos) if err != nil { return nil, err } pos += written case nil: pos += writeEmptyByteArray(buffer, pos) default: pos += writeEmptyByteArray(buffer, pos) } return writeRlpPrefix(buffer, pos), nil case valueNode: written, err := h.valueNodeToBuffer(n, buffer, pos) if err != nil { return nil, err } pos += written return buffer[rlpPrefixLength:pos], nil case *accountNode: // we don't do double RLP here, so `accountNodeToBuffer` is not applicable encodedAccount := pool.GetBuffer(n.EncodingLengthForHashing()) n.EncodeForHashing(encodedAccount.B) pos += copy(buffer[pos:], encodedAccount.Bytes()) pool.PutBuffer(encodedAccount) return buffer[rlpPrefixLength:pos], nil case hashNode: return nil, errors.New("hasher#hashChildren: met unexpected hash node") } return nil, nil } func (h *hasher) valueNodeToBuffer(vn valueNode, buffer []byte, pos int) (int, error) { h.bw.Setup(buffer, pos) var val rlphacks.RlpSerializable if h.valueNodesRlpEncoded { val = rlphacks.RlpEncodedBytes(vn) } else { val = rlphacks.RlpSerializableBytes(vn) } if err := val.ToDoubleRLP(h.bw); err != nil { return 0, err } return val.DoubleRLPLen(), nil } func (h *hasher) accountNodeToBuffer(ac *accountNode, buffer []byte, pos int) (int, error) { encodedAccount := pool.GetBuffer(ac.EncodingLengthForHashing()) defer pool.PutBuffer(encodedAccount) ac.EncodeForHashing(encodedAccount.B) enc := rlphacks.RlpEncodedBytes(encodedAccount.Bytes()) h.bw.Setup(buffer, pos) if err := enc.ToDoubleRLP(h.bw); err != nil { return 0, err } return enc.DoubleRLPLen(), nil } func EncodeAsValue(data []byte) ([]byte, error) { tmp := new(bytes.Buffer) err := rlp.Encode(tmp, valueNode(data)) if err != nil { return nil, err } return tmp.Bytes(), nil } // store hashes the node n and if we have a storage layer specified, it writes // the key/value pair to it and tracks any node->child references as well as any // node->external trie references. func (h *hasher) store(children []byte, force bool, storeTo []byte) int { if children == nil { copy(storeTo, emptyHash[:]) return 32 } if len(children) < 32 && !force { copy(storeTo, children) return len(children) } h.sha.Reset() h.sha.Write(children) h.sha.Read(storeTo[:32]) // Only squize first 32 bytes return 32 } func (h *hasher) makeHashNode(data []byte) hashNode { n := make(hashNode, h.sha.Size()) h.sha.Reset() h.sha.Write(data) h.sha.Read(n) return n } func (h *hasher) hashChild(child node, buffer []byte, pos int, bufOffset int) (int, error) { if child == nil { return writeEmptyByteArray(buffer, pos), nil } // Reserve one byte for length hashLen, err := h.hashInternal(child, false, buffer[pos+1:], bufOffset+pos+1) if err != nil { return 0, err } if hashLen == common.HashLength { buffer[pos] = byte(0x80 + common.HashLength) return common.HashLength + 1, nil } // Shift one byte backwards, because it is not treated as a byte array but embedded RLP copy(buffer[pos:pos+hashLen], buffer[pos+1:]) return hashLen, nil } func writeEmptyByteArray(buffer []byte, pos int) int { buffer[pos] = rlp.EmptyStringCode return 1 }