// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package rlpx implements the RLPx transport protocol. package rlpx import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/elliptic" "crypto/hmac" "crypto/rand" "encoding/binary" "errors" "fmt" "hash" "io" mrand "math/rand" "net" "time" "github.com/golang/snappy" "github.com/ledgerwatch/erigon/crypto" "github.com/ledgerwatch/erigon/crypto/ecies" "github.com/ledgerwatch/erigon/rlp" "golang.org/x/crypto/sha3" ) // Conn is an RLPx network connection. It wraps a low-level network connection. The // underlying connection should not be used for other activity when it is wrapped by Conn. // // Before sending messages, a handshake must be performed by calling the Handshake method. // This type is not generally safe for concurrent use, but reading and writing of messages // may happen concurrently after the handshake. type Conn struct { dialDest *ecdsa.PublicKey conn net.Conn session *sessionState // These are the buffers for snappy compression. // Compression is enabled if they are non-nil. snappyReadBuffer []byte snappyWriteBuffer []byte } // sessionState contains the session keys. type sessionState struct { enc cipher.Stream dec cipher.Stream egressMAC hashMAC ingressMAC hashMAC rbuf readBuffer wbuf writeBuffer } // hashMAC holds the state of the RLPx v4 MAC contraption. type hashMAC struct { cipher cipher.Block hash hash.Hash aesBuffer [16]byte hashBuffer [32]byte seedBuffer [32]byte } func newHashMAC(cipher cipher.Block, h hash.Hash) hashMAC { m := hashMAC{cipher: cipher, hash: h} if cipher.BlockSize() != len(m.aesBuffer) { panic(fmt.Errorf("invalid MAC cipher block size %d", cipher.BlockSize())) } if h.Size() != len(m.hashBuffer) { panic(fmt.Errorf("invalid MAC digest size %d", h.Size())) } return m } // NewConn wraps the given network connection. If dialDest is non-nil, the connection // behaves as the initiator during the handshake. func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn { return &Conn{ dialDest: dialDest, conn: conn, } } // SetSnappy enables or disables snappy compression of messages. This is usually called // after the devp2p Hello message exchange when the negotiated version indicates that // compression is available on both ends of the connection. func (c *Conn) SetSnappy(snappy bool) { if snappy { c.snappyReadBuffer = []byte{} c.snappyWriteBuffer = []byte{} } else { c.snappyReadBuffer = nil c.snappyWriteBuffer = nil } } // SetReadDeadline sets the deadline for all future read operations. func (c *Conn) SetReadDeadline(time time.Time) error { return c.conn.SetReadDeadline(time) } // SetWriteDeadline sets the deadline for all future write operations. func (c *Conn) SetWriteDeadline(time time.Time) error { return c.conn.SetWriteDeadline(time) } // SetDeadline sets the deadline for all future read and write operations. func (c *Conn) SetDeadline(time time.Time) error { return c.conn.SetDeadline(time) } // Read reads a message from the connection. // The returned data buffer is valid until the next call to Read. func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) { if c.session == nil { panic("can't ReadMsg before handshake") } frame, err := c.session.readFrame(c.conn) if err != nil { return 0, nil, 0, err } code, data, err = rlp.SplitUint64(frame) if err != nil { return 0, nil, 0, fmt.Errorf("invalid message code: %w", err) } wireSize = len(data) // If snappy is enabled, verify and decompress message. if c.snappyReadBuffer != nil { var actualSize int actualSize, err = snappy.DecodedLen(data) if err != nil { return code, nil, 0, err } if actualSize > maxUint24 { return code, nil, 0, errPlainMessageTooLarge } c.snappyReadBuffer = growslice(c.snappyReadBuffer, actualSize) data, err = snappy.Decode(c.snappyReadBuffer, data) } return code, data, wireSize, err } func (h *sessionState) readFrame(conn io.Reader) ([]byte, error) { h.rbuf.reset() // Read the frame header. header, err := h.rbuf.read(conn, 32) if err != nil { return nil, err } // Verify header MAC. wantHeaderMAC := h.ingressMAC.computeHeader(header[:16]) if !hmac.Equal(wantHeaderMAC, header[16:]) { return nil, errors.New("bad header MAC") } // Decrypt the frame header to get the frame size. h.dec.XORKeyStream(header[:16], header[:16]) fsize := readUint24(header[:16]) // Frame size rounded up to 16 byte boundary for padding. rsize := fsize if padding := fsize % 16; padding > 0 { rsize += 16 - padding } // Read the frame content. frame, err := h.rbuf.read(conn, int(rsize)) if err != nil { return nil, err } // Validate frame MAC. frameMAC, err := h.rbuf.read(conn, 16) if err != nil { return nil, err } wantFrameMAC := h.ingressMAC.computeFrame(frame) if !hmac.Equal(wantFrameMAC, frameMAC) { return nil, errors.New("bad frame MAC") } // Decrypt the frame data. h.dec.XORKeyStream(frame, frame) return frame[:fsize], nil } // Write writes a message to the connection. // // Write returns the written size of the message data. This may be less than or equal to // len(data) depending on whether snappy compression is enabled. func (c *Conn) Write(code uint64, data []byte) (uint32, error) { if c.session == nil { panic("can't WriteMsg before handshake") } if len(data) > maxUint24 { return 0, errPlainMessageTooLarge } if c.snappyWriteBuffer != nil { // Ensure the buffer has sufficient size. // Package snappy will allocate its own buffer if the provided // one is smaller than MaxEncodedLen. c.snappyWriteBuffer = growslice(c.snappyWriteBuffer, snappy.MaxEncodedLen(len(data))) data = snappy.Encode(c.snappyWriteBuffer, data) } wireSize := uint32(len(data)) err := c.session.writeFrame(c.conn, code, data) return wireSize, err } func (h *sessionState) writeFrame(conn io.Writer, code uint64, data []byte) error { h.wbuf.reset() // Write header. fsize := rlp.IntSize(code) + len(data) if fsize > maxUint24 { return errPlainMessageTooLarge } header := h.wbuf.appendZero(16) putUint24(uint32(fsize), header) copy(header[3:], zeroHeader) h.enc.XORKeyStream(header, header) // Write header MAC. h.wbuf.Write(h.egressMAC.computeHeader(header)) // Encode and encrypt the frame data. offset := len(h.wbuf.data) h.wbuf.data = rlp.AppendUint64(h.wbuf.data, code) h.wbuf.Write(data) if padding := fsize % 16; padding > 0 { h.wbuf.appendZero(16 - padding) } framedata := h.wbuf.data[offset:] h.enc.XORKeyStream(framedata, framedata) // Write frame MAC. h.wbuf.Write(h.egressMAC.computeFrame(framedata)) _, err := conn.Write(h.wbuf.data) return err } // computeHeader computes the MAC of a frame header. func (m *hashMAC) computeHeader(header []byte) []byte { sum1 := m.hash.Sum(m.hashBuffer[:0]) return m.compute(sum1, header) } // computeFrame computes the MAC of framedata. func (m *hashMAC) computeFrame(framedata []byte) []byte { m.hash.Write(framedata) seed := m.hash.Sum(m.seedBuffer[:0]) return m.compute(seed, seed[:16]) } // compute computes the MAC of a 16-byte 'seed'. // // To do this, it encrypts the current value of the hash state, then XORs the ciphertext // with seed. The obtained value is written back into the hash state and hash output is // taken again. The first 16 bytes of the resulting sum are the MAC value. // // This MAC construction is a horrible, legacy thing. func (m *hashMAC) compute(sum1, seed []byte) []byte { if len(seed) != len(m.aesBuffer) { panic("invalid MAC seed") } m.cipher.Encrypt(m.aesBuffer[:], sum1) for i := range m.aesBuffer { m.aesBuffer[i] ^= seed[i] } m.hash.Write(m.aesBuffer[:]) sum2 := m.hash.Sum(m.hashBuffer[:0]) return sum2[:16] } // Handshake performs the handshake. This must be called before any data is written // or read from the connection. func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) { var ( sec Secrets err error h handshakeState ) if c.dialDest != nil { sec, err = h.runInitiator(c.conn, prv, c.dialDest) } else { sec, err = h.runRecipient(c.conn, prv) } if err != nil { return nil, err } c.InitWithSecrets(sec) c.session.rbuf = h.rbuf c.session.wbuf = h.wbuf return sec.remote, err } // InitWithSecrets injects connection secrets as if a handshake had // been performed. This cannot be called after the handshake. func (c *Conn) InitWithSecrets(sec Secrets) { if c.session != nil { panic("can't handshake twice") } macc, err := aes.NewCipher(sec.MAC) if err != nil { panic("invalid MAC secret: " + err.Error()) } encc, err := aes.NewCipher(sec.AES) if err != nil { panic("invalid AES secret: " + err.Error()) } // we use an all-zeroes IV for AES because the key used // for encryption is ephemeral. iv := make([]byte, encc.BlockSize()) c.session = &sessionState{ enc: cipher.NewCTR(encc, iv), dec: cipher.NewCTR(encc, iv), egressMAC: newHashMAC(macc, sec.EgressMAC), ingressMAC: newHashMAC(macc, sec.IngressMAC), } } // Close closes the underlying network connection. func (c *Conn) Close() error { return c.conn.Close() } // Constants for the handshake. const ( sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 sigLen = crypto.SignatureLength // elliptic S256 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte shaLen = 32 // hash length (for nonce etc) eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ ) var ( // this is used in place of actual frame header data. // TODO: replace this when Msg contains the protocol type code. zeroHeader = []byte{0xC2, 0x80, 0x80} // errPlainMessageTooLarge is returned if a decompressed message length exceeds // the allowed 24 bits (i.e. length >= 16MB). errPlainMessageTooLarge = errors.New("message length >= 16MB") ) // Secrets represents the connection secrets which are negotiated during the handshake. type Secrets struct { AES, MAC []byte EgressMAC, IngressMAC hash.Hash remote *ecdsa.PublicKey } // handshakeState contains the state of the encryption handshake. type handshakeState struct { initiator bool remote *ecies.PublicKey // remote-pubk initNonce, respNonce []byte // nonce randomPrivKey *ecies.PrivateKey // ecdhe-random remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk rbuf readBuffer wbuf writeBuffer } // RLPx v4 handshake auth (defined in EIP-8). type authMsgV4 struct { Signature [sigLen]byte InitiatorPubkey [pubLen]byte Nonce [shaLen]byte Version uint // Ignore additional fields (forward-compatibility) Rest []rlp.RawValue `rlp:"tail"` } // RLPx v4 handshake response (defined in EIP-8). type authRespV4 struct { RandomPubkey [pubLen]byte Nonce [shaLen]byte Version uint // Ignore additional fields (forward-compatibility) Rest []rlp.RawValue `rlp:"tail"` } // runRecipient negotiates a session token on conn. // it should be called on the listening side of the connection. // // prv is the local client's private key. func (h *handshakeState) runRecipient(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) { authMsg := new(authMsgV4) authPacket, err := h.readMsg(authMsg, prv, conn) if err != nil { return s, err } if err := h.handleAuthMsg(authMsg, prv); err != nil { return s, err } authRespMsg, err := h.makeAuthResp() if err != nil { return s, err } authRespPacket, err := h.sealEIP8(authRespMsg) if err != nil { return s, err } if _, err = conn.Write(authRespPacket); err != nil { return s, err } return h.secrets(authPacket, authRespPacket) } func (h *handshakeState) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { // Import the remote identity. rpub, err := importPublicKey(msg.InitiatorPubkey[:]) if err != nil { return err } h.initNonce = msg.Nonce[:] h.remote = rpub // Generate random keypair for ECDH. // If a private key is already set, use it instead of generating one (for testing). if h.randomPrivKey == nil { h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { return err } } // Check the signature. token, err := h.staticSharedSecret(prv) if err != nil { return err } signedMsg := xor(token, h.initNonce) remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) if err != nil { return err } h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) return nil } // secrets is called after the handshake is completed. // It extracts the connection secrets from the handshake values. func (h *handshakeState) secrets(auth, authResp []byte) (Secrets, error) { ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) if err != nil { return Secrets{}, err } // derive base secrets from ephemeral key agreement sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) s := Secrets{ remote: h.remote.ExportECDSA(), AES: aesSecret, MAC: crypto.Keccak256(ecdheSecret, aesSecret), } // setup sha3 instances for the MACs mac1 := sha3.NewLegacyKeccak256() mac1.Write(xor(s.MAC, h.respNonce)) mac1.Write(auth) mac2 := sha3.NewLegacyKeccak256() mac2.Write(xor(s.MAC, h.initNonce)) mac2.Write(authResp) if h.initiator { s.EgressMAC, s.IngressMAC = mac1, mac2 } else { s.EgressMAC, s.IngressMAC = mac2, mac1 } return s, nil } // staticSharedSecret returns the static shared secret, the result // of key agreement between the local and remote static node key. func (h *handshakeState) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) } // runInitiator negotiates a session token on conn. // it should be called on the dialing side of the connection. // // prv is the local client's private key. func (h *handshakeState) runInitiator(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) { h.initiator = true h.remote = ecies.ImportECDSAPublic(remote) authMsg, err := h.makeAuthMsg(prv) if err != nil { return s, err } authPacket, err := h.sealEIP8(authMsg) if err != nil { return s, err } if _, err = conn.Write(authPacket); err != nil { return s, err } authRespMsg := new(authRespV4) authRespPacket, err := h.readMsg(authRespMsg, prv, conn) if err != nil { return s, err } if err := h.handleAuthResp(authRespMsg); err != nil { return s, err } return h.secrets(authPacket, authRespPacket) } // makeAuthMsg creates the initiator handshake message. func (h *handshakeState) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { // Generate random initiator nonce. h.initNonce = make([]byte, shaLen) _, err := rand.Read(h.initNonce) if err != nil { return nil, err } // Generate random keypair to for ECDH. h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { return nil, err } // Sign known message: static-shared-secret ^ nonce token, err := h.staticSharedSecret(prv) if err != nil { return nil, err } signed := xor(token, h.initNonce) signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) if err != nil { return nil, err } msg := new(authMsgV4) copy(msg.Signature[:], signature) copy(msg.InitiatorPubkey[:], crypto.MarshalPubkey(&prv.PublicKey)) copy(msg.Nonce[:], h.initNonce) msg.Version = 4 return msg, nil } func (h *handshakeState) handleAuthResp(msg *authRespV4) (err error) { h.respNonce = msg.Nonce[:] h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) return err } func (h *handshakeState) makeAuthResp() (msg *authRespV4, err error) { // Generate random nonce. h.respNonce = make([]byte, shaLen) if _, err = rand.Read(h.respNonce); err != nil { return nil, err } msg = new(authRespV4) copy(msg.Nonce[:], h.respNonce) copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) msg.Version = 4 return msg, nil } // readMsg reads an encrypted handshake message, decoding it into msg. func (h *handshakeState) readMsg(msg interface{}, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { h.rbuf.reset() h.rbuf.grow(512) // Read the size prefix. prefix, err := h.rbuf.read(r, 2) if err != nil { return nil, err } size := binary.BigEndian.Uint16(prefix) // Read the handshake packet. packet, err := h.rbuf.read(r, int(size)) if err != nil { return nil, err } dec, err := ecies.ImportECDSA(prv).Decrypt(packet, nil, prefix) if err != nil { return nil, err } // Can't use rlp.DecodeBytes here because it rejects // trailing data (forward-compatibility). s := rlp.NewStream(bytes.NewReader(dec), 0) err = s.Decode(msg) return h.rbuf.data[:len(prefix)+len(packet)], err } // sealEIP8 encrypts a handshake message. func (h *handshakeState) sealEIP8(msg interface{}) ([]byte, error) { h.wbuf.reset() // Write the message plaintext. if err := rlp.Encode(&h.wbuf, msg); err != nil { return nil, err } // Pad with random amount of data. the amount needs to be at least 100 bytes to make // the message distinguishable from pre-EIP-8 handshakes. h.wbuf.appendZero(mrand.Intn(100) + 100) //nolint:gosec prefix := make([]byte, 2) binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead)) enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix) return append(prefix, enc...), err } // importPublicKey unmarshals 64 or 65 bytes long public keys. func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { var pub *ecdsa.PublicKey var err error switch len(pubKey) { case 64: pub, err = crypto.UnmarshalPubkey(pubKey) case 65: pub, err = crypto.UnmarshalPubkeyStd(pubKey) default: return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) } if err != nil { return nil, err } return ecies.ImportECDSAPublic(pub), nil } func exportPubkey(pub *ecies.PublicKey) []byte { if pub == nil { panic("nil pubkey") } return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] } func xor(one, other []byte) (xor []byte) { xor = make([]byte, len(one)) for i := 0; i < len(one); i++ { xor[i] = one[i] ^ other[i] } return xor }