/* Copyright 2021 Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package compress import ( "bufio" "bytes" "container/heap" "context" "encoding/binary" "errors" "fmt" "io" "math/bits" "os" "path/filepath" "sync" "time" "github.com/c2h5oh/datasize" "github.com/ledgerwatch/erigon-lib/common" dir2 "github.com/ledgerwatch/erigon-lib/common/dir" "github.com/ledgerwatch/erigon-lib/etl" "github.com/ledgerwatch/log/v3" "golang.org/x/exp/slices" ) // Compressor is the main operating type for performing per-word compression // After creating a compression, one needs to add superstrings to it, using `AddWord` function // In order to add word without compression, function `AddUncompressedWord` needs to be used // Compressor only tracks which words are compressed and which are not until the compressed // file is created. After that, the user of the file needs to know when to call // `Next` or `NextUncompressed` function on the decompressor. // After that, `Compress` function needs to be called to perform the compression // and eventually create output file type Compressor struct { ctx context.Context wg *sync.WaitGroup superstrings chan []byte uncompressedFile *DecompressedFile tmpDir string // temporary directory to use for ETL when building dictionary logPrefix string outputFile string // File where to output the dictionary and compressed data tmpOutFilePath string // File where to output the dictionary and compressed data suffixCollectors []*etl.Collector // Buffer for "superstring" - transformation of superstrings where each byte of a word, say b, // is turned into 2 bytes, 0x01 and b, and two zero bytes 0x00 0x00 are inserted after each word // this is needed for using ordinary (one string) suffix sorting algorithm instead of a generalised (many superstrings) suffix // sorting algorithm superstring []byte wordsCount uint64 superstringCount uint64 superstringLen int workers int Ratio CompressionRatio lvl log.Lvl trace bool } func NewCompressor(ctx context.Context, logPrefix, outputFile, tmpDir string, minPatternScore uint64, workers int, lvl log.Lvl) (*Compressor, error) { dir2.MustExist(tmpDir) dir, fileName := filepath.Split(outputFile) tmpOutFilePath := filepath.Join(dir, fileName) + ".tmp" // UncompressedFile - it's intermediate .idt file, outputFile it's final .seg (or .dat) file. // tmpOutFilePath - it's ".seg.tmp" (".idt.tmp") file which will be renamed to .seg file if everything succeed. // It allow atomically create .seg file (downloader will not see partially ready/ non-ready .seg files). // I didn't create ".seg.tmp" file in tmpDir, because I think tmpDir and snapsthoDir may be mounted to different drives uncompressedPath := filepath.Join(tmpDir, fileName) + ".idt" uncompressedFile, err := NewUncompressedFile(uncompressedPath) if err != nil { return nil, err } // Collector for dictionary superstrings (sorted by their score) superstrings := make(chan []byte, workers*2) wg := &sync.WaitGroup{} wg.Add(workers) suffixCollectors := make([]*etl.Collector, workers) for i := 0; i < workers; i++ { collector := etl.NewCollector(logPrefix+"_dict", tmpDir, etl.NewSortableBuffer(etl.BufferOptimalSize/2)) collector.LogLvl(lvl) suffixCollectors[i] = collector go processSuperstring(superstrings, collector, minPatternScore, wg) } return &Compressor{ uncompressedFile: uncompressedFile, tmpOutFilePath: tmpOutFilePath, outputFile: outputFile, tmpDir: tmpDir, logPrefix: logPrefix, workers: workers, ctx: ctx, superstrings: superstrings, suffixCollectors: suffixCollectors, lvl: lvl, wg: wg, }, nil } func (c *Compressor) Close() { c.uncompressedFile.Close() for _, collector := range c.suffixCollectors { collector.Close() } c.suffixCollectors = nil } func (c *Compressor) SetTrace(trace bool) { c.trace = trace } func (c *Compressor) Count() int { return int(c.wordsCount) } func (c *Compressor) AddWord(word []byte) error { c.wordsCount++ l := 2*len(word) + 2 if c.superstringLen+l > superstringLimit { if c.superstringCount%samplingFactor == 0 { c.superstrings <- c.superstring } c.superstringCount++ c.superstring = make([]byte, 0, 1024*1024) c.superstringLen = 0 } c.superstringLen += l if c.superstringCount%samplingFactor == 0 { for _, a := range word { c.superstring = append(c.superstring, 1, a) } c.superstring = append(c.superstring, 0, 0) } return c.uncompressedFile.Append(word) } func (c *Compressor) AddUncompressedWord(word []byte) error { c.wordsCount++ return c.uncompressedFile.AppendUncompressed(word) } func (c *Compressor) Compress() error { c.uncompressedFile.w.Flush() logEvery := time.NewTicker(20 * time.Second) defer logEvery.Stop() if len(c.superstring) > 0 { c.superstrings <- c.superstring } close(c.superstrings) c.wg.Wait() if c.lvl < log.LvlTrace { log.Log(c.lvl, fmt.Sprintf("[%s] BuildDict start", c.logPrefix), "workers", c.workers) } t := time.Now() db, err := DictionaryBuilderFromCollectors(c.ctx, compressLogPrefix, c.tmpDir, c.suffixCollectors, c.lvl) if err != nil { return err } if c.trace { _, fileName := filepath.Split(c.outputFile) if err := PersistDictrionary(filepath.Join(c.tmpDir, fileName)+".dictionary.txt", db); err != nil { return err } } defer os.Remove(c.tmpOutFilePath) if c.lvl < log.LvlTrace { log.Log(c.lvl, fmt.Sprintf("[%s] BuildDict", c.logPrefix), "took", time.Since(t)) } t = time.Now() if err := reducedict(c.ctx, c.trace, c.logPrefix, c.tmpOutFilePath, c.uncompressedFile, c.workers, db, c.lvl); err != nil { return err } if err := os.Rename(c.tmpOutFilePath, c.outputFile); err != nil { return fmt.Errorf("renaming: %w", err) } c.Ratio, err = Ratio(c.uncompressedFile.filePath, c.outputFile) if err != nil { return fmt.Errorf("ratio: %w", err) } _, fName := filepath.Split(c.outputFile) if c.lvl < log.LvlTrace { log.Log(c.lvl, fmt.Sprintf("[%s] Compress", c.logPrefix), "took", time.Since(t), "ratio", c.Ratio, "file", fName) } return nil } // superstringLimit limits how large can one "superstring" get before it is processed // CompressorSequential allocates 7 bytes for each uint of superstringLimit. For example, // superstingLimit 16m will result in 112Mb being allocated for various arrays const superstringLimit = 16 * 1024 * 1024 // minPatternLen is minimum length of pattern we consider to be included into the dictionary const minPatternLen = 5 const maxPatternLen = 128 // maxDictPatterns is the maximum number of patterns allowed in the initial (not reduced dictionary) // Large values increase memory consumption of dictionary reduction phase /* Experiments on 74Gb uncompressed file (bsc 012500-013000-transactions.seg) Ram - needed just to open compressed file (Huff tables, etc...) dec_speed - loop with `word, _ = g.Next(word[:0])` skip_speed - loop with `g.Skip()` | DictSize | Ram | file_size | dec_speed | skip_speed | | -------- | ---- | --------- | --------- | ---------- | | 1M | 70Mb | 35871Mb | 4m06s | 1m58s | | 512K | 42Mb | 36496Mb | 3m49s | 1m51s | | 256K | 21Mb | 37100Mb | 3m44s | 1m48s | | 128K | 11Mb | 37782Mb | 3m25s | 1m44s | | 64K | 7Mb | 38597Mb | 3m16s | 1m34s | | 32K | 5Mb | 39626Mb | 3m0s | 1m29s | */ const maxDictPatterns = 64 * 1024 // samplingFactor - skip superstrings if `superstringNumber % samplingFactor != 0` const samplingFactor = 4 // nolint const compressLogPrefix = "compress" type DictionaryBuilder struct { lastWord []byte items []*Pattern limit int lastWordScore uint64 } func (db *DictionaryBuilder) Reset(limit int) { db.limit = limit db.items = db.items[:0] } func (db *DictionaryBuilder) Len() int { return len(db.items) } func (db *DictionaryBuilder) Less(i, j int) bool { if db.items[i].score == db.items[j].score { return bytes.Compare(db.items[i].word, db.items[j].word) < 0 } return db.items[i].score < db.items[j].score } func dictionaryBuilderLess(i, j *Pattern) bool { if i.score == j.score { return bytes.Compare(i.word, j.word) < 0 } return i.score < j.score } func (db *DictionaryBuilder) Swap(i, j int) { db.items[i], db.items[j] = db.items[j], db.items[i] } func (db *DictionaryBuilder) Sort() { slices.SortFunc(db.items, dictionaryBuilderLess) } func (db *DictionaryBuilder) Push(x interface{}) { db.items = append(db.items, x.(*Pattern)) } func (db *DictionaryBuilder) Pop() interface{} { old := db.items n := len(old) x := old[n-1] old[n-1] = nil db.items = old[0 : n-1] return x } func (db *DictionaryBuilder) processWord(chars []byte, score uint64) { heap.Push(db, &Pattern{word: common.Copy(chars), score: score}) if db.Len() > db.limit { // Remove the element with smallest score heap.Pop(db) } } func (db *DictionaryBuilder) loadFunc(k, v []byte, table etl.CurrentTableReader, next etl.LoadNextFunc) error { score := binary.BigEndian.Uint64(v) if bytes.Equal(k, db.lastWord) { db.lastWordScore += score } else { if db.lastWord != nil { db.processWord(db.lastWord, db.lastWordScore) } db.lastWord = append(db.lastWord[:0], k...) db.lastWordScore = score } return nil } func (db *DictionaryBuilder) finish() { if db.lastWord != nil { db.processWord(db.lastWord, db.lastWordScore) } } func (db *DictionaryBuilder) ForEach(f func(score uint64, word []byte)) { for i := db.Len(); i > 0; i-- { f(db.items[i-1].score, db.items[i-1].word) } } func (db *DictionaryBuilder) Close() { db.items = nil db.lastWord = nil } // Pattern is representation of a pattern that is searched in the superstrings to compress them // patterns are stored in a patricia tree and contain pattern score (calculated during // the initial dictionary building), frequency of usage, and code type Pattern struct { word []byte // Pattern characters score uint64 // Score assigned to the pattern during dictionary building uses uint64 // How many times this pattern has been used during search and optimisation code uint64 // Allocated numerical code codeBits int // Number of bits in the code depth int // Depth of the pattern in the huffman tree (for encoding in the file) } // PatternList is a sorted list of pattern for the purpose of // building Huffman tree to determine efficient coding. // Patterns with least usage come first, we use numerical code // as a tie breaker to make sure the resulting Huffman code is canonical type PatternList []*Pattern func (pl PatternList) Len() int { return len(pl) } func patternListLess(i, j *Pattern) bool { if i.uses == j.uses { return bits.Reverse64(i.code) < bits.Reverse64(j.code) } return i.uses < j.uses } // PatternHuff is an intermediate node in a huffman tree of patterns // It has two children, each of which may either be another intermediate node (h0 or h1) // or leaf node, which is Pattern (p0 or p1). type PatternHuff struct { p0 *Pattern p1 *Pattern h0 *PatternHuff h1 *PatternHuff uses uint64 tieBreaker uint64 } func (h *PatternHuff) AddZero() { if h.p0 != nil { h.p0.code <<= 1 h.p0.codeBits++ } else { h.h0.AddZero() } if h.p1 != nil { h.p1.code <<= 1 h.p1.codeBits++ } else { h.h1.AddZero() } } func (h *PatternHuff) AddOne() { if h.p0 != nil { h.p0.code <<= 1 h.p0.code++ h.p0.codeBits++ } else { h.h0.AddOne() } if h.p1 != nil { h.p1.code <<= 1 h.p1.code++ h.p1.codeBits++ } else { h.h1.AddOne() } } func (h *PatternHuff) SetDepth(depth int) { if h.p0 != nil { h.p0.depth = depth + 1 h.p0.uses = 0 } if h.p1 != nil { h.p1.depth = depth + 1 h.p1.uses = 0 } if h.h0 != nil { h.h0.SetDepth(depth + 1) } if h.h1 != nil { h.h1.SetDepth(depth + 1) } } // PatternHeap is priority queue of pattern for the purpose of building // Huffman tree to determine efficient coding. Patterns with least usage // have highest priority. We use a tie-breaker to make sure // the resulting Huffman code is canonical type PatternHeap []*PatternHuff func (ph PatternHeap) Len() int { return len(ph) } func (ph PatternHeap) Less(i, j int) bool { if ph[i].uses == ph[j].uses { return ph[i].tieBreaker < ph[j].tieBreaker } return ph[i].uses < ph[j].uses } func (ph *PatternHeap) Swap(i, j int) { (*ph)[i], (*ph)[j] = (*ph)[j], (*ph)[i] } func (ph *PatternHeap) Push(x interface{}) { *ph = append(*ph, x.(*PatternHuff)) } func (ph *PatternHeap) Pop() interface{} { old := *ph n := len(old) x := old[n-1] old[n-1] = nil *ph = old[0 : n-1] return x } type Position struct { uses uint64 pos uint64 code uint64 codeBits int depth int // Depth of the position in the huffman tree (for encoding in the file) } type PositionHuff struct { p0 *Position p1 *Position h0 *PositionHuff h1 *PositionHuff uses uint64 tieBreaker uint64 } func (h *PositionHuff) AddZero() { if h.p0 != nil { h.p0.code <<= 1 h.p0.codeBits++ } else { h.h0.AddZero() } if h.p1 != nil { h.p1.code <<= 1 h.p1.codeBits++ } else { h.h1.AddZero() } } func (h *PositionHuff) AddOne() { if h.p0 != nil { h.p0.code <<= 1 h.p0.code++ h.p0.codeBits++ } else { h.h0.AddOne() } if h.p1 != nil { h.p1.code <<= 1 h.p1.code++ h.p1.codeBits++ } else { h.h1.AddOne() } } func (h *PositionHuff) SetDepth(depth int) { if h.p0 != nil { h.p0.depth = depth + 1 h.p0.uses = 0 } if h.p1 != nil { h.p1.depth = depth + 1 h.p1.uses = 0 } if h.h0 != nil { h.h0.SetDepth(depth + 1) } if h.h1 != nil { h.h1.SetDepth(depth + 1) } } type PositionList []*Position func (pl PositionList) Len() int { return len(pl) } func positionListLess(i, j *Position) bool { if i.uses == j.uses { return bits.Reverse64(i.code) < bits.Reverse64(j.code) } return i.uses < j.uses } type PositionHeap []*PositionHuff func (ph PositionHeap) Len() int { return len(ph) } func (ph PositionHeap) Less(i, j int) bool { if ph[i].uses == ph[j].uses { return ph[i].tieBreaker < ph[j].tieBreaker } return ph[i].uses < ph[j].uses } func (ph *PositionHeap) Swap(i, j int) { (*ph)[i], (*ph)[j] = (*ph)[j], (*ph)[i] } func (ph *PositionHeap) Push(x interface{}) { *ph = append(*ph, x.(*PositionHuff)) } func (ph *PositionHeap) Pop() interface{} { old := *ph n := len(old) x := old[n-1] old[n-1] = nil *ph = old[0 : n-1] return x } type HuffmanCoder struct { w *bufio.Writer outputBits int outputByte byte } func (hf *HuffmanCoder) encode(code uint64, codeBits int) error { for codeBits > 0 { var bitsUsed int if hf.outputBits+codeBits > 8 { bitsUsed = 8 - hf.outputBits } else { bitsUsed = codeBits } mask := (uint64(1) << bitsUsed) - 1 hf.outputByte |= byte((code & mask) << hf.outputBits) code >>= bitsUsed codeBits -= bitsUsed hf.outputBits += bitsUsed if hf.outputBits == 8 { if e := hf.w.WriteByte(hf.outputByte); e != nil { return e } hf.outputBits = 0 hf.outputByte = 0 } } return nil } func (hf *HuffmanCoder) flush() error { if hf.outputBits > 0 { if e := hf.w.WriteByte(hf.outputByte); e != nil { return e } hf.outputBits = 0 hf.outputByte = 0 } return nil } // DynamicCell represents result of dynamic programming for certain starting position type DynamicCell struct { optimStart int coverStart int compression int score uint64 patternIdx int // offset of the last element in the pattern slice } type Ring struct { cells []DynamicCell head, tail, count int } func NewRing() *Ring { return &Ring{ cells: make([]DynamicCell, 16), head: 0, tail: 0, count: 0, } } func (r *Ring) Reset() { r.count = 0 r.head = 0 r.tail = 0 } func (r *Ring) ensureSize() { if r.count < len(r.cells) { return } newcells := make([]DynamicCell, r.count*2) if r.tail > r.head { copy(newcells, r.cells[r.head:r.tail]) } else { n := copy(newcells, r.cells[r.head:]) copy(newcells[n:], r.cells[:r.tail]) } r.head = 0 r.tail = r.count r.cells = newcells } func (r *Ring) PushFront() *DynamicCell { r.ensureSize() if r.head == 0 { r.head = len(r.cells) } r.head-- r.count++ return &r.cells[r.head] } func (r *Ring) PushBack() *DynamicCell { r.ensureSize() if r.tail == len(r.cells) { r.tail = 0 } result := &r.cells[r.tail] r.tail++ r.count++ return result } func (r Ring) Len() int { return r.count } func (r *Ring) Get(i int) *DynamicCell { if i < 0 || i >= r.count { return nil } return &r.cells[(r.head+i)&(len(r.cells)-1)] } // Truncate removes all items starting from i func (r *Ring) Truncate(i int) { r.count = i r.tail = (r.head + i) & (len(r.cells) - 1) } type DictAggregator struct { collector *etl.Collector dist map[int]int lastWord []byte lastWordScore uint64 } func (da *DictAggregator) processWord(word []byte, score uint64) error { var scoreBuf [8]byte binary.BigEndian.PutUint64(scoreBuf[:], score) return da.collector.Collect(word, scoreBuf[:]) } func (da *DictAggregator) Load(loadFunc etl.LoadFunc, args etl.TransformArgs) error { defer da.collector.Close() return da.collector.Load(nil, "", loadFunc, args) } func (da *DictAggregator) aggLoadFunc(k, v []byte, table etl.CurrentTableReader, next etl.LoadNextFunc) error { if _, ok := da.dist[len(k)]; !ok { da.dist[len(k)] = 0 } da.dist[len(k)]++ score := binary.BigEndian.Uint64(v) if bytes.Equal(k, da.lastWord) { da.lastWordScore += score } else { if da.lastWord != nil { if err := da.processWord(da.lastWord, da.lastWordScore); err != nil { return err } } da.lastWord = append(da.lastWord[:0], k...) da.lastWordScore = score } return nil } func (da *DictAggregator) finish() error { if da.lastWord != nil { return da.processWord(da.lastWord, da.lastWordScore) } return nil } type CompressionRatio float64 func (r CompressionRatio) String() string { return fmt.Sprintf("%.2f", r) } func Ratio(f1, f2 string) (CompressionRatio, error) { s1, err := os.Stat(f1) if err != nil { return 0, nil } s2, err := os.Stat(f2) if err != nil { return 0, nil } return CompressionRatio(float64(s1.Size()) / float64(s2.Size())), nil } // DecompressedFile - .dat file format - simple format for temporary data store type DecompressedFile struct { f *os.File w *bufio.Writer filePath string buf []byte count uint64 } func NewUncompressedFile(filePath string) (*DecompressedFile, error) { f, err := os.Create(filePath) if err != nil { return nil, err } w := bufio.NewWriterSize(f, 2*etl.BufIOSize) return &DecompressedFile{filePath: filePath, f: f, w: w, buf: make([]byte, 128)}, nil } func (f *DecompressedFile) Close() { f.w.Flush() //f.f.Sync() f.f.Close() os.Remove(f.filePath) } func (f *DecompressedFile) Append(v []byte) error { f.count++ // For compressed words, the length prefix is shifted to make lowest bit zero n := binary.PutUvarint(f.buf, 2*uint64(len(v))) if _, e := f.w.Write(f.buf[:n]); e != nil { return e } if len(v) > 0 { if _, e := f.w.Write(v); e != nil { return e } } return nil } func (f *DecompressedFile) AppendUncompressed(v []byte) error { f.count++ // For uncompressed words, the length prefix is shifted to make lowest bit one n := binary.PutUvarint(f.buf, 2*uint64(len(v))+1) if _, e := f.w.Write(f.buf[:n]); e != nil { return e } if len(v) > 0 { if _, e := f.w.Write(v); e != nil { return e } } return nil } // ForEach - Read keys from the file and generate superstring (with extra byte 0x1 prepended to each character, and with 0x0 0x0 pair inserted between keys and values) // We only consider values with length > 2, because smaller values are not compressible without going into bits func (f *DecompressedFile) ForEach(walker func(v []byte, compressed bool) error) error { _, err := f.f.Seek(0, 0) if err != nil { return err } r := bufio.NewReaderSize(f.f, int(8*datasize.MB)) buf := make([]byte, 16*1024) l, e := binary.ReadUvarint(r) for ; e == nil; l, e = binary.ReadUvarint(r) { // extract lowest bit of length prefix as "uncompressed" flag and shift to obtain correct length compressed := (l & 1) == 0 l >>= 1 if len(buf) < int(l) { buf = make([]byte, l) } if _, e = io.ReadFull(r, buf[:l]); e != nil { return e } if err := walker(buf[:l], compressed); err != nil { return err } } if e != nil && !errors.Is(e, io.EOF) { return e } return nil }