/* Copyright 2021 Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package txpool import ( "encoding/binary" "fmt" "hash" "math/bits" "github.com/holiman/uint256" "github.com/ledgerwatch/erigon-lib/gointerfaces/types" "github.com/ledgerwatch/erigon-lib/rlp" "github.com/ledgerwatch/secp256k1" "golang.org/x/crypto/sha3" ) type PeerID *types.H512 type Hashes []byte // flatten list of 32-byte hashes // TxContext is object that is required to parse transactions and turn transaction payload into TxSlot objects // usage of TxContext helps avoid extra memory allocations type TxParseContext struct { recCtx *secp256k1.Context // Context for sender recovery keccak1 hash.Hash keccak2 hash.Hash chainId, r, s uint256.Int // Signature values n27, n28, n35 uint256.Int buf [65]byte // buffer needs to be enough for hashes (32 bytes) and for public key (65 bytes) sighash [32]byte sig [65]byte } func NewTxParseContext() *TxParseContext { ctx := &TxParseContext{ keccak1: sha3.NewLegacyKeccak256(), keccak2: sha3.NewLegacyKeccak256(), recCtx: secp256k1.NewContext(), } ctx.n27.SetUint64(27) ctx.n28.SetUint64(28) ctx.n35.SetUint64(35) return ctx } // TxSlot contains information extracted from an Ethereum transaction, which is enough to manage it inside the transaction. // Also, it contains some auxillary information, like ephemeral fields, and indices within priority queues type TxSlot struct { //txId uint64 // Transaction id (distinct from transaction hash), used as a compact reference to a transaction accross data structures //senderId uint64 // Sender id (distinct from sender address), used as a compact referecne to to a sender accross data structures nonce uint64 // Nonce of the transaction tip uint64 // Maximum tip that transaction is giving to miner/block proposer feeCap uint64 // Maximum fee that transaction burns and gives to the miner/block proposer gas uint64 // Gas limit of the transaction value uint256.Int // Value transferred by the transaction idHash [32]byte // Transaction hash for the purposes of using it as a transaction Id sender [20]byte // Sender address for the transaction, recovered from the signature creation bool // Set to true if "To" field of the transation is not set dataLen int // Length of transaction's data (for calculation of intrinsic gas) alAddrCount int // Number of addresses in the access list alStorCount int // Number of storage keys in the access list //bestIdx int // Index of the transaction in the best priority queue (of whatever pool it currently belongs to) //worstIdx int // Index of the transaction in the worst priority queue (of whatever pook it currently belongs to) //local bool // Whether transaction has been injected locally (and hence needs priority when mining or proposing a block) } const ( LegacyTxType int = 0 AccessListTxType int = 1 DynamicFeeTxType int = 2 ) const ParseTransactionErrorPrefix = "parse transaction payload" // ParseTransaction extracts all the information from the transactions's payload (RLP) necessary to build TxSlot // it also performs syntactic validation of the transactions func (ctx *TxParseContext) ParseTransaction(payload []byte, pos int) (*TxSlot, int, error) { if len(payload) == 0 { return nil, 0, fmt.Errorf("%s: empty rlp", ParseTransactionErrorPrefix) } // Compute transaction hash ctx.keccak1.Reset() ctx.keccak2.Reset() var slot TxSlot // Legacy transations have list Prefix, whereas EIP-2718 transactions have string Prefix // therefore we assign the first returned value of Prefix function (list) to legacy variable dataPos, dataLen, legacy, err := rlp.Prefix(payload, pos) if err != nil { return nil, 0, fmt.Errorf("%s: size Prefix: %v", ParseTransactionErrorPrefix, err) } if dataPos+dataLen != len(payload) { return nil, 0, fmt.Errorf("%s: transaction must be either 1 list or 1 string", ParseTransactionErrorPrefix) } p := dataPos var txType int // If it is non-legacy transaction, the transaction type follows, and then the the list if !legacy { txType = int(payload[p]) if _, err = ctx.keccak1.Write(payload[p : p+1]); err != nil { return nil, 0, fmt.Errorf("%s: computing idHash (hashing type Prefix): %w", ParseTransactionErrorPrefix, err) } if _, err = ctx.keccak2.Write(payload[p : p+1]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash (hashing type Prefix): %w", ParseTransactionErrorPrefix, err) } p++ if p >= len(payload) { return nil, 0, fmt.Errorf("%s: unexpected end of payload after txType", ParseTransactionErrorPrefix) } dataPos, dataLen, err = rlp.List(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: envelope Prefix: %v", ParseTransactionErrorPrefix, err) } // Hash the envelope, not the full payload if _, err = ctx.keccak1.Write(payload[p : dataPos+dataLen]); err != nil { return nil, 0, fmt.Errorf("%s: computing idHash (hashing the envelope): %w", ParseTransactionErrorPrefix, err) } p = dataPos } // Remember where signing hash data begins (it will need to be wrapped in an RLP list) sigHashPos := p // If it is non-legacy tx, chainId follows, but we skip it if !legacy { dataPos, dataLen, err = rlp.String(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: chainId len: %w", ParseTransactionErrorPrefix, err) } p = dataPos + dataLen } // Next follows the nonce, which we need to parse p, slot.nonce, err = rlp.U64(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: nonce: %w", ParseTransactionErrorPrefix, err) } // Next follows gas price or tip // Although consensus rules specify that tip can be up to 256 bit long, we narrow it to 64 bit p, slot.tip, err = rlp.U64(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: tip: %w", ParseTransactionErrorPrefix, err) } // Next follows feeCap, but only for dynamic fee transactions, for legacy transaction, it is // equal to tip if txType < DynamicFeeTxType { slot.feeCap = slot.tip } else { // Although consensus rules specify that feeCap can be up to 256 bit long, we narrow it to 64 bit p, slot.feeCap, err = rlp.U64(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: feeCap: %w", ParseTransactionErrorPrefix, err) } } // Next follows gas p, slot.gas, err = rlp.U64(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: gas: %w", ParseTransactionErrorPrefix, err) } // Next follows the destrination address (if present) dataPos, dataLen, err = rlp.String(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: to len: %w", ParseTransactionErrorPrefix, err) } if dataLen != 0 && dataLen != 20 { return nil, 0, fmt.Errorf("%s: unexpected length of to field: %d", ParseTransactionErrorPrefix, dataLen) } // Only note if To field is empty or not slot.creation = dataLen == 0 p = dataPos + dataLen // Next follows value p, err = rlp.U256(payload, p, &slot.value) if err != nil { return nil, 0, fmt.Errorf("%s: value: %w", ParseTransactionErrorPrefix, err) } // Next goes data, but we are only interesting in its length dataPos, dataLen, err = rlp.String(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: data len: %w", ParseTransactionErrorPrefix, err) } slot.dataLen = dataLen p = dataPos + dataLen // Next follows access list for non-legacy transactions, we are only interesting in number of addresses and storage keys if !legacy { dataPos, dataLen, err = rlp.List(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: access list len: %w", ParseTransactionErrorPrefix, err) } tuplePos := dataPos var tupleLen int for tuplePos < dataPos+dataLen { tuplePos, tupleLen, err = rlp.List(payload, tuplePos) if err != nil { return nil, 0, fmt.Errorf("%s: tuple len: %w", ParseTransactionErrorPrefix, err) } var addrPos int addrPos, err = rlp.StringOfLen(payload, tuplePos, 20) if err != nil { return nil, 0, fmt.Errorf("%s: tuple addr len: %w", ParseTransactionErrorPrefix, err) } slot.alAddrCount++ var storagePos, storageLen int storagePos, storageLen, err = rlp.List(payload, addrPos+20) if err != nil { return nil, 0, fmt.Errorf("%s: storage key list len: %w", ParseTransactionErrorPrefix, err) } skeyPos := storagePos for skeyPos < storagePos+storageLen { skeyPos, err = rlp.StringOfLen(payload, skeyPos, 32) if err != nil { return nil, 0, fmt.Errorf("%s: tuple storage key len: %w", ParseTransactionErrorPrefix, err) } slot.alStorCount++ skeyPos += 32 } if skeyPos != storagePos+storageLen { return nil, 0, fmt.Errorf("%s: extraneous space in the tuple after storage key list", ParseTransactionErrorPrefix) } tuplePos += tupleLen } if tuplePos != dataPos+dataLen { return nil, 0, fmt.Errorf("%s: extraneous space in the access list after all tuples", ParseTransactionErrorPrefix) } p = dataPos + dataLen } // This is where the data for sighash ends // Next follows V of the signature var vByte byte sigHashEnd := p sigHashLen := uint(sigHashEnd - sigHashPos) var chainIdBits, chainIdLen int if legacy { p, err = rlp.U256(payload, p, &ctx.chainId) if err != nil { return nil, 0, fmt.Errorf("%s: V: %w", ParseTransactionErrorPrefix, err) } // Compute chainId from V if ctx.chainId.Eq(&ctx.n27) || ctx.chainId.Eq(&ctx.n28) { // Do not add chain id and two extra zeros vByte = byte(ctx.chainId.Uint64() - 27) } else { ctx.chainId.Sub(&ctx.chainId, &ctx.n35) vByte = byte(1 - (ctx.chainId.Uint64() & 1)) ctx.chainId.Rsh(&ctx.chainId, 1) chainIdBits = ctx.chainId.BitLen() if chainIdBits <= 7 { chainIdLen = 1 } else { chainIdLen = (chainIdBits + 7) / 8 // It is always < 56 bytes sigHashLen++ // For chainId len Prefix } sigHashLen += uint(chainIdLen) // For chainId sigHashLen += 2 // For two extra zeros } } else { var v uint64 p, v, err = rlp.U64(payload, p) if err != nil { return nil, 0, fmt.Errorf("%s: V: %w", ParseTransactionErrorPrefix, err) } if v > 1 { return nil, 0, fmt.Errorf("%s: V is loo large: %d", ParseTransactionErrorPrefix, v) } vByte = byte(v) } // Next follows R of the signature p, err = rlp.U256(payload, p, &ctx.r) if err != nil { return nil, 0, fmt.Errorf("%s: R: %w", ParseTransactionErrorPrefix, err) } // New follows S of the signature p, err = rlp.U256(payload, p, &ctx.s) if err != nil { return nil, 0, fmt.Errorf("%s: S: %w", ParseTransactionErrorPrefix, err) } // For legacy transactions, hash the full payload if legacy { if _, err = ctx.keccak1.Write(payload[pos:p]); err != nil { return nil, 0, fmt.Errorf("%s: computing idHash: %w", ParseTransactionErrorPrefix, err) } } ctx.keccak1.Sum(slot.idHash[:0]) //ctx.keccak1.(io.Reader).Read(slot.idHash[:32]) // Computing sigHash (hash used to recover sender from the signature) // Write len Prefix to the sighash if sigHashLen < 56 { ctx.buf[0] = byte(sigHashLen) + 192 if _, err := ctx.keccak2.Write(ctx.buf[:1]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash (hashing len Prefix): %w", ParseTransactionErrorPrefix, err) } } else { beLen := (bits.Len(uint(sigHashLen)) + 7) / 8 binary.BigEndian.PutUint64(ctx.buf[1:], uint64(sigHashLen)) ctx.buf[8-beLen] = byte(beLen) + 247 if _, err := ctx.keccak2.Write(ctx.buf[8-beLen : 9]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash (hashing len Prefix): %w", ParseTransactionErrorPrefix, err) } } if _, err = ctx.keccak2.Write(payload[sigHashPos:sigHashEnd]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash: %w", ParseTransactionErrorPrefix, err) } if legacy { if chainIdLen > 0 { if chainIdBits <= 7 { ctx.buf[0] = byte(ctx.chainId.Uint64()) if _, err := ctx.keccak2.Write(ctx.buf[:1]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash (hashing legacy chainId): %w", ParseTransactionErrorPrefix, err) } } else { binary.BigEndian.PutUint64(ctx.buf[1:9], ctx.chainId[3]) binary.BigEndian.PutUint64(ctx.buf[9:17], ctx.chainId[2]) binary.BigEndian.PutUint64(ctx.buf[17:25], ctx.chainId[1]) binary.BigEndian.PutUint64(ctx.buf[25:33], ctx.chainId[0]) ctx.buf[32-chainIdLen] = 128 + byte(chainIdLen) if _, err = ctx.keccak2.Write(ctx.buf[32-chainIdLen : 33]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash (hashing legacy chainId): %w", ParseTransactionErrorPrefix, err) } } // Encode two zeros ctx.buf[0] = 128 ctx.buf[1] = 128 if _, err := ctx.keccak2.Write(ctx.buf[:2]); err != nil { return nil, 0, fmt.Errorf("%s: computing signHash (hashing zeros after legacy chainId): %w", ParseTransactionErrorPrefix, err) } } } // Squeeze sighash //ctx.keccak2.(io.Reader).Read(ctx.sighash[:32]) ctx.keccak2.Sum(ctx.sighash[:0]) binary.BigEndian.PutUint64(ctx.sig[0:8], ctx.r[3]) binary.BigEndian.PutUint64(ctx.sig[8:16], ctx.r[2]) binary.BigEndian.PutUint64(ctx.sig[16:24], ctx.r[1]) binary.BigEndian.PutUint64(ctx.sig[24:32], ctx.r[0]) binary.BigEndian.PutUint64(ctx.sig[32:40], ctx.s[3]) binary.BigEndian.PutUint64(ctx.sig[40:48], ctx.s[2]) binary.BigEndian.PutUint64(ctx.sig[48:56], ctx.s[1]) binary.BigEndian.PutUint64(ctx.sig[56:64], ctx.s[0]) ctx.sig[64] = vByte // recover sender if _, err = secp256k1.RecoverPubkeyWithContext(ctx.recCtx, ctx.sighash[:], ctx.sig[:], ctx.buf[:0]); err != nil { return nil, 0, fmt.Errorf("%s: recovering sender from signature: %w", ParseTransactionErrorPrefix, err) } //apply keccak to the public key ctx.keccak2.Reset() if _, err = ctx.keccak2.Write(ctx.buf[1:65]); err != nil { return nil, 0, fmt.Errorf("%s: computing sender from public key: %w", ParseTransactionErrorPrefix, err) } // squeeze the hash of the public key ctx.keccak2.Sum(ctx.buf[:0]) //ctx.keccak2.(io.Reader).Read(ctx.buf[:32]) //take last 20 bytes as address copy(slot.sender[:], ctx.buf[12:32]) return &slot, p, nil }