// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "fmt" "github.com/holiman/uint256" "golang.org/x/crypto/sha3" "github.com/ledgerwatch/erigon/common" "github.com/ledgerwatch/erigon/core/types" "github.com/ledgerwatch/erigon/params" "github.com/ledgerwatch/log/v3" ) func opAdd(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Add(&x, y) return nil, nil } func opSub(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Sub(&x, y) return nil, nil } func opMul(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Mul(&x, y) return nil, nil } func opDiv(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Div(&x, y) return nil, nil } func opSdiv(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.SDiv(&x, y) return nil, nil } func opMod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Mod(&x, y) return nil, nil } func opSmod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.SMod(&x, y) return nil, nil } func opExp(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { base, exponent := scope.Stack.Pop(), scope.Stack.Peek() switch { case exponent.IsZero(): // x ^ 0 == 1 exponent.SetOne() case base.IsZero(): // 0 ^ y, if y != 0, == 0 exponent.Clear() case exponent.LtUint64(2): // exponent == 1 // x ^ 1 == x exponent.Set(&base) case base.LtUint64(2): // base == 1 // 1 ^ y == 1 exponent.SetOne() case base.LtUint64(3): // base == 2 if exponent.LtUint64(256) { n := uint(exponent.Uint64()) exponent.SetOne() exponent.Lsh(exponent, n) } else { exponent.Clear() } default: exponent.Exp(&base, exponent) } return nil, nil } func opSignExtend(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { back, num := scope.Stack.Pop(), scope.Stack.Peek() num.ExtendSign(num, &back) return nil, nil } func opNot(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x := scope.Stack.Peek() x.Not(x) return nil, nil } func opLt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() if x.Lt(y) { y.SetOne() } else { y.Clear() } return nil, nil } func opGt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() if x.Gt(y) { y.SetOne() } else { y.Clear() } return nil, nil } func opSlt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() if x.Slt(y) { y.SetOne() } else { y.Clear() } return nil, nil } func opSgt(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() if x.Sgt(y) { y.SetOne() } else { y.Clear() } return nil, nil } func opEq(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() if x.Eq(y) { y.SetOne() } else { y.Clear() } return nil, nil } func opIszero(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x := scope.Stack.Peek() if x.IsZero() { x.SetOne() } else { x.Clear() } return nil, nil } func opAnd(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.And(&x, y) return nil, nil } func opOr(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Or(&x, y) return nil, nil } func opXor(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y := scope.Stack.Pop(), scope.Stack.Peek() y.Xor(&x, y) return nil, nil } func opByte(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { th, val := scope.Stack.Pop(), scope.Stack.Peek() val.Byte(&th) return nil, nil } func opAddmod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y, z := scope.Stack.Pop(), scope.Stack.Pop(), scope.Stack.Peek() if z.IsZero() { z.Clear() } else { z.AddMod(&x, &y, z) } return nil, nil } func opMulmod(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x, y, z := scope.Stack.Pop(), scope.Stack.Pop(), scope.Stack.Peek() if z.IsZero() { z.Clear() } else { z.MulMod(&x, &y, z) } return nil, nil } // opSHL implements Shift Left // The SHL instruction (shift left) pops 2 values from the stack, first arg1 and then arg2, // and pushes on the stack arg2 shifted to the left by arg1 number of bits. func opSHL(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { // Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards shift, value := scope.Stack.Pop(), scope.Stack.Peek() if shift.LtUint64(256) { value.Lsh(value, uint(shift.Uint64())) } else { value.Clear() } return nil, nil } // opSHR implements Logical Shift Right // The SHR instruction (logical shift right) pops 2 values from the stack, first arg1 and then arg2, // and pushes on the stack arg2 shifted to the right by arg1 number of bits with zero fill. func opSHR(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { // Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards shift, value := scope.Stack.Pop(), scope.Stack.Peek() if shift.LtUint64(256) { value.Rsh(value, uint(shift.Uint64())) } else { value.Clear() } return nil, nil } // opSAR implements Arithmetic Shift Right // The SAR instruction (arithmetic shift right) pops 2 values from the stack, first arg1 and then arg2, // and pushes on the stack arg2 shifted to the right by arg1 number of bits with sign extension. func opSAR(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { shift, value := scope.Stack.Pop(), scope.Stack.Peek() if shift.GtUint64(255) { if value.Sign() >= 0 { value.Clear() } else { // Max negative shift: all bits set value.SetAllOne() } return nil, nil } n := uint(shift.Uint64()) value.SRsh(value, n) return nil, nil } func opKeccak256(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { offset, size := scope.Stack.Pop(), scope.Stack.Peek() data := scope.Memory.GetPtr(offset.Uint64(), size.Uint64()) if interpreter.hasher == nil { interpreter.hasher = sha3.NewLegacyKeccak256().(keccakState) } else { interpreter.hasher.Reset() } interpreter.hasher.Write(data) if _, err := interpreter.hasher.Read(interpreter.hasherBuf[:]); err != nil { panic(err) } size.SetBytes(interpreter.hasherBuf[:]) return nil, nil } func opAddress(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetBytes(scope.Contract.Address().Bytes())) return nil, nil } func opBalance(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { slot := scope.Stack.Peek() address := common.Address(slot.Bytes20()) slot.Set(interpreter.evm.IntraBlockState().GetBalance(address)) return nil, nil } func opOrigin(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetBytes(interpreter.evm.TxContext().Origin.Bytes())) return nil, nil } func opCaller(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetBytes(scope.Contract.Caller().Bytes())) return nil, nil } func opCallValue(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(scope.Contract.value) return nil, nil } func opCallDataLoad(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { x := scope.Stack.Peek() if offset, overflow := x.Uint64WithOverflow(); !overflow { data := getData(scope.Contract.Input, offset, 32) x.SetBytes(data) } else { x.Clear() } return nil, nil } func opCallDataSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetUint64(uint64(len(scope.Contract.Input)))) return nil, nil } func opCallDataCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( memOffset = scope.Stack.Pop() dataOffset = scope.Stack.Pop() length = scope.Stack.Pop() ) dataOffset64, overflow := dataOffset.Uint64WithOverflow() if overflow { dataOffset64 = 0xffffffffffffffff } // These values are checked for overflow during gas cost calculation memOffset64 := memOffset.Uint64() length64 := length.Uint64() scope.Memory.Set(memOffset64, length64, getData(scope.Contract.Input, dataOffset64, length64)) return nil, nil } func opReturnDataSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetUint64(uint64(len(interpreter.returnData)))) return nil, nil } func opReturnDataCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( memOffset = scope.Stack.Pop() dataOffset = scope.Stack.Pop() length = scope.Stack.Pop() ) offset64, overflow := dataOffset.Uint64WithOverflow() if overflow { return nil, ErrReturnDataOutOfBounds } // we can reuse dataOffset now (aliasing it for clarity) end := dataOffset _, overflow = end.AddOverflow(&dataOffset, &length) if overflow { return nil, ErrReturnDataOutOfBounds } end64, overflow := end.Uint64WithOverflow() if overflow || uint64(len(interpreter.returnData)) < end64 { return nil, ErrReturnDataOutOfBounds } scope.Memory.Set(memOffset.Uint64(), length.Uint64(), interpreter.returnData[offset64:end64]) return nil, nil } func opExtCodeSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { slot := scope.Stack.Peek() slot.SetUint64(uint64(interpreter.evm.IntraBlockState().GetCodeSize(slot.Bytes20()))) return nil, nil } func opCodeSize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { l := new(uint256.Int) l.SetUint64(uint64(len(scope.Contract.Code))) scope.Stack.Push(l) return nil, nil } func opCodeCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( memOffset = scope.Stack.Pop() codeOffset = scope.Stack.Pop() length = scope.Stack.Pop() ) uint64CodeOffset, overflow := codeOffset.Uint64WithOverflow() if overflow { uint64CodeOffset = 0xffffffffffffffff } codeCopy := getData(scope.Contract.Code, uint64CodeOffset, length.Uint64()) scope.Memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy) return nil, nil } func opExtCodeCopy(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( stack = scope.Stack a = stack.Pop() memOffset = stack.Pop() codeOffset = stack.Pop() length = stack.Pop() ) addr := common.Address(a.Bytes20()) len64 := length.Uint64() codeCopy := getDataBig(interpreter.evm.IntraBlockState().GetCode(addr), &codeOffset, len64) scope.Memory.Set(memOffset.Uint64(), len64, codeCopy) return nil, nil } // opExtCodeHash returns the code hash of a specified account. // There are several cases when the function is called, while we can relay everything // to `state.GetCodeHash` function to ensure the correctness. // // (1) Caller tries to get the code hash of a normal contract account, state // // should return the relative code hash and set it as the result. // // (2) Caller tries to get the code hash of a non-existent account, state should // // return common.Hash{} and zero will be set as the result. // // (3) Caller tries to get the code hash for an account without contract code, // // state should return emptyCodeHash(0xc5d246...) as the result. // // (4) Caller tries to get the code hash of a precompiled account, the result // // should be zero or emptyCodeHash. // // It is worth noting that in order to avoid unnecessary create and clean, // all precompile accounts on mainnet have been transferred 1 wei, so the return // here should be emptyCodeHash. // If the precompile account is not transferred any amount on a private or // customized chain, the return value will be zero. // // (5) Caller tries to get the code hash for an account which is marked as suicided // // in the current transaction, the code hash of this account should be returned. // // (6) Caller tries to get the code hash for an account which is marked as deleted, // // this account should be regarded as a non-existent account and zero should be returned. func opExtCodeHash(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { slot := scope.Stack.Peek() address := common.Address(slot.Bytes20()) if interpreter.evm.IntraBlockState().Empty(address) { slot.Clear() } else { slot.SetBytes(interpreter.evm.IntraBlockState().GetCodeHash(address).Bytes()) } return nil, nil } func opGasprice(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(interpreter.evm.TxContext().GasPrice) return nil, nil } func opBlockhash(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { num := scope.Stack.Peek() num64, overflow := num.Uint64WithOverflow() if overflow { num.Clear() return nil, nil } var upper, lower uint64 upper = interpreter.evm.Context().BlockNumber if upper < 257 { lower = 0 } else { lower = upper - 256 } if num64 >= lower && num64 < upper { num.SetBytes(interpreter.evm.Context().GetHash(num64).Bytes()) } else { num.Clear() } return nil, nil } func opCoinbase(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetBytes(interpreter.evm.Context().Coinbase.Bytes())) return nil, nil } func opTimestamp(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { v := new(uint256.Int).SetUint64(interpreter.evm.Context().Time) scope.Stack.Push(v) return nil, nil } func opNumber(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { v := new(uint256.Int).SetUint64(interpreter.evm.Context().BlockNumber) scope.Stack.Push(v) return nil, nil } func opDifficulty(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var v *uint256.Int if interpreter.evm.Context().PrevRanDao != nil { // EIP-4399: Supplant DIFFICULTY opcode with PREVRANDAO v = new(uint256.Int).SetBytes(interpreter.evm.Context().PrevRanDao.Bytes()) } else { var overflow bool v, overflow = uint256.FromBig(interpreter.evm.Context().Difficulty) if overflow { return nil, fmt.Errorf("interpreter.evm.Context.Difficulty higher than 2^256-1") } } scope.Stack.Push(v) return nil, nil } func opGasLimit(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { if interpreter.evm.Context().MaxGasLimit { scope.Stack.Push(new(uint256.Int).SetAllOne()) } else { scope.Stack.Push(new(uint256.Int).SetUint64(interpreter.evm.Context().GasLimit)) } return nil, nil } func opPop(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Pop() return nil, nil } func opMload(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { v := scope.Stack.Peek() offset := v.Uint64() v.SetBytes(scope.Memory.GetPtr(offset, 32)) return nil, nil } func opMstore(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { mStart, val := scope.Stack.Pop(), scope.Stack.Pop() scope.Memory.Set32(mStart.Uint64(), &val) return nil, nil } func opMstore8(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { off, val := scope.Stack.Pop(), scope.Stack.Pop() scope.Memory.store[off.Uint64()] = byte(val.Uint64()) return nil, nil } func opSload(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { loc := scope.Stack.Peek() interpreter.hasherBuf = loc.Bytes32() interpreter.evm.IntraBlockState().GetState(scope.Contract.Address(), &interpreter.hasherBuf, loc) return nil, nil } func opSstore(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { loc := scope.Stack.Pop() val := scope.Stack.Pop() interpreter.hasherBuf = loc.Bytes32() interpreter.evm.IntraBlockState().SetState(scope.Contract.Address(), &interpreter.hasherBuf, val) return nil, nil } func opJump(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { pos := scope.Stack.Pop() if valid, usedBitmap := scope.Contract.validJumpdest(&pos); !valid { if usedBitmap { if interpreter.cfg.TraceJumpDest { log.Warn("Code Bitmap used for detecting invalid jump", "tx", fmt.Sprintf("0x%x", interpreter.evm.TxContext().TxHash), "block_num", interpreter.evm.Context().BlockNumber, ) } else { // This is "cheaper" version because it does not require calculation of txHash for each transaction log.Warn("Code Bitmap used for detecting invalid jump", "block_num", interpreter.evm.Context().BlockNumber, ) } } return nil, ErrInvalidJump } *pc = pos.Uint64() return nil, nil } func opJumpi(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { pos, cond := scope.Stack.Pop(), scope.Stack.Pop() if !cond.IsZero() { if valid, usedBitmap := scope.Contract.validJumpdest(&pos); !valid { if usedBitmap { if interpreter.cfg.TraceJumpDest { log.Warn("Code Bitmap used for detecting invalid jump", "tx", fmt.Sprintf("0x%x", interpreter.evm.TxContext().TxHash), "block_num", interpreter.evm.Context().BlockNumber, ) } else { // This is "cheaper" version because it does not require calculation of txHash for each transaction log.Warn("Code Bitmap used for detecting invalid jump", "block_num", interpreter.evm.Context().BlockNumber, ) } } return nil, ErrInvalidJump } *pc = pos.Uint64() } else { *pc++ } return nil, nil } func opJumpdest(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { return nil, nil } func opPc(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetUint64(*pc)) return nil, nil } func opMsize(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetUint64(uint64(scope.Memory.Len()))) return nil, nil } func opGas(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Push(new(uint256.Int).SetUint64(scope.Contract.Gas)) return nil, nil } func opCreate(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( value = scope.Stack.Pop() offset = scope.Stack.Pop() size = scope.Stack.Peek() input = scope.Memory.GetCopy(offset.Uint64(), size.Uint64()) gas = scope.Contract.Gas ) if interpreter.evm.ChainRules().IsTangerineWhistle { gas -= gas / 64 } // reuse size int for stackvalue stackvalue := size scope.Contract.UseGas(gas) res, addr, returnGas, suberr := interpreter.evm.Create(scope.Contract, input, gas, &value) // Push item on the stack based on the returned error. If the ruleset is // homestead we must check for CodeStoreOutOfGasError (homestead only // rule) and treat as an error, if the ruleset is frontier we must // ignore this error and pretend the operation was successful. if interpreter.evm.ChainRules().IsHomestead && suberr == ErrCodeStoreOutOfGas { stackvalue.Clear() } else if suberr != nil && suberr != ErrCodeStoreOutOfGas { stackvalue.Clear() } else { stackvalue.SetBytes(addr.Bytes()) } scope.Contract.Gas += returnGas if suberr == ErrExecutionReverted { return res, nil } return nil, nil } func opCreate2(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( endowment = scope.Stack.Pop() offset, size = scope.Stack.Pop(), scope.Stack.Pop() salt = scope.Stack.Pop() input = scope.Memory.GetCopy(offset.Uint64(), size.Uint64()) gas = scope.Contract.Gas ) // Apply EIP150 gas -= gas / 64 scope.Contract.UseGas(gas) // reuse size int for stackvalue stackValue := size res, addr, returnGas, suberr := interpreter.evm.Create2(scope.Contract, input, gas, &endowment, &salt) // Push item on the stack based on the returned error. if suberr != nil { stackValue.Clear() } else { stackValue.SetBytes(addr.Bytes()) } scope.Stack.Push(&stackValue) scope.Contract.Gas += returnGas if suberr == ErrExecutionReverted { return res, nil } return nil, nil } func opCall(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { stack := scope.Stack // Pop gas. The actual gas in interpreter.evm.callGasTemp. // We can use this as a temporary value temp := stack.Pop() gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, value, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop() toAddr := common.Address(addr.Bytes20()) // Get the arguments from the memory. args := scope.Memory.GetPtr(inOffset.Uint64(), inSize.Uint64()) if !value.IsZero() { gas += params.CallStipend } ret, returnGas, err := interpreter.evm.Call(scope.Contract, toAddr, args, gas, &value, false /* bailout */) if err != nil { temp.Clear() } else { temp.SetOne() } stack.Push(&temp) if err == nil || err == ErrExecutionReverted { ret = common.CopyBytes(ret) scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } scope.Contract.Gas += returnGas return ret, nil } func opCallCode(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { // Pop gas. The actual gas is in interpreter.evm.callGasTemp. stack := scope.Stack // We use it as a temporary value temp := stack.Pop() gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, value, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop() toAddr := common.Address(addr.Bytes20()) // Get arguments from the memory. args := scope.Memory.GetPtr(inOffset.Uint64(), inSize.Uint64()) if !value.IsZero() { gas += params.CallStipend } ret, returnGas, err := interpreter.evm.CallCode(scope.Contract, toAddr, args, gas, &value) if err != nil { temp.Clear() } else { temp.SetOne() } stack.Push(&temp) if err == nil || err == ErrExecutionReverted { ret = common.CopyBytes(ret) scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } scope.Contract.Gas += returnGas return ret, nil } func opDelegateCall(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { stack := scope.Stack // Pop gas. The actual gas is in interpreter.evm.callGasTemp. // We use it as a temporary value temp := stack.Pop() gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop() toAddr := common.Address(addr.Bytes20()) // Get arguments from the memory. args := scope.Memory.GetPtr(inOffset.Uint64(), inSize.Uint64()) ret, returnGas, err := interpreter.evm.DelegateCall(scope.Contract, toAddr, args, gas) if err != nil { temp.Clear() } else { temp.SetOne() } stack.Push(&temp) if err == nil || err == ErrExecutionReverted { ret = common.CopyBytes(ret) scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } scope.Contract.Gas += returnGas return ret, nil } func opStaticCall(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { // Pop gas. The actual gas is in interpreter.evm.callGasTemp. stack := scope.Stack // We use it as a temporary value temp := stack.Pop() gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop() toAddr := common.Address(addr.Bytes20()) // Get arguments from the memory. args := scope.Memory.GetPtr(inOffset.Uint64(), inSize.Uint64()) ret, returnGas, err := interpreter.evm.StaticCall(scope.Contract, toAddr, args, gas) if err != nil { temp.Clear() } else { temp.SetOne() } stack.Push(&temp) if err == nil || err == ErrExecutionReverted { ret = common.CopyBytes(ret) scope.Memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } scope.Contract.Gas += returnGas return ret, nil } func opReturn(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { offset, size := scope.Stack.Pop(), scope.Stack.Pop() ret := scope.Memory.GetPtr(offset.Uint64(), size.Uint64()) return ret, nil } func opRevert(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { offset, size := scope.Stack.Pop(), scope.Stack.Pop() ret := scope.Memory.GetPtr(offset.Uint64(), size.Uint64()) return ret, nil } func opStop(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { return nil, nil } func opSuicide(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { beneficiary := scope.Stack.Pop() callerAddr := scope.Contract.Address() beneficiaryAddr := common.Address(beneficiary.Bytes20()) balance := interpreter.evm.IntraBlockState().GetBalance(callerAddr) if interpreter.evm.Config().Debug { interpreter.evm.Config().Tracer.CaptureSelfDestruct(callerAddr, beneficiaryAddr, balance) } interpreter.evm.IntraBlockState().AddBalance(beneficiaryAddr, balance) interpreter.evm.IntraBlockState().Suicide(callerAddr) return nil, nil } // following functions are used by the instruction jump table // make log instruction function func makeLog(size int) executionFunc { return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { topics := make([]common.Hash, size) stack := scope.Stack mStart, mSize := stack.Pop(), stack.Pop() for i := 0; i < size; i++ { addr := stack.Pop() topics[i] = addr.Bytes32() } d := scope.Memory.GetCopy(mStart.Uint64(), mSize.Uint64()) interpreter.evm.IntraBlockState().AddLog(&types.Log{ Address: scope.Contract.Address(), Topics: topics, Data: d, // This is a non-consensus field, but assigned here because // core/state doesn't know the current block number. BlockNumber: interpreter.evm.Context().BlockNumber, }) return nil, nil } } // opPush1 is a specialized version of pushN func opPush1(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { var ( codeLen = uint64(len(scope.Contract.Code)) integer = new(uint256.Int) ) *pc++ if *pc < codeLen { scope.Stack.Push(integer.SetUint64(uint64(scope.Contract.Code[*pc]))) } else { scope.Stack.Push(integer.Clear()) } return nil, nil } // make push instruction function func makePush(size uint64, pushByteSize int) executionFunc { return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { codeLen := len(scope.Contract.Code) startMin := int(*pc + 1) if startMin >= codeLen { startMin = codeLen } endMin := startMin + pushByteSize if startMin+pushByteSize >= codeLen { endMin = codeLen } integer := new(uint256.Int) scope.Stack.Push(integer.SetBytes(common.RightPadBytes( // So it doesn't matter what we push onto the stack. scope.Contract.Code[startMin:endMin], pushByteSize))) *pc += size return nil, nil } } // make dup instruction function func makeDup(size int64) executionFunc { return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Dup(int(size)) return nil, nil } } // make swap instruction function func makeSwap(size int64) executionFunc { // switch n + 1 otherwise n would be swapped with n size++ return func(pc *uint64, interpreter *EVMInterpreter, scope *ScopeContext) ([]byte, error) { scope.Stack.Swap(int(size)) return nil, nil } }