// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "context" "encoding/binary" "fmt" "io" "runtime" "sort" "sync" "sync/atomic" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/dbutils" "github.com/ledgerwatch/turbo-geth/common/debug" "github.com/ledgerwatch/turbo-geth/core/types/accounts" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/trie" ) // Trie cache generation limit after which to evict trie nodes from memory. var MaxTrieCacheGen = uint32(1024 * 1024) const ( //FirstContractIncarnation - first incarnation for contract accounts. After 1 it increases by 1. FirstContractIncarnation = 1 //NonContractIncarnation incarnation for non contracts NonContractIncarnation = 0 ) type StateReader interface { ReadAccountData(address common.Address) (*accounts.Account, error) ReadAccountStorage(address common.Address, incarnation uint64, key *common.Hash) ([]byte, error) ReadAccountCode(address common.Address, codeHash common.Hash) ([]byte, error) ReadAccountCodeSize(address common.Address, codeHash common.Hash) (int, error) } type StateWriter interface { UpdateAccountData(ctx context.Context, address common.Address, original, account *accounts.Account) error UpdateAccountCode(addrHash common.Hash, incarnation uint64, codeHash common.Hash, code []byte) error DeleteAccount(ctx context.Context, address common.Address, original *accounts.Account) error WriteAccountStorage(ctx context.Context, address common.Address, incarnation uint64, key, original, value *common.Hash) error CreateContract(address common.Address) error } type NoopWriter struct { } func NewNoopWriter() *NoopWriter { return &NoopWriter{} } func (nw *NoopWriter) UpdateAccountData(_ context.Context, address common.Address, original, account *accounts.Account) error { return nil } func (nw *NoopWriter) DeleteAccount(_ context.Context, address common.Address, original *accounts.Account) error { return nil } func (nw *NoopWriter) UpdateAccountCode(addrHash common.Hash, incarnation uint64, codeHash common.Hash, code []byte) error { return nil } func (nw *NoopWriter) WriteAccountStorage(_ context.Context, address common.Address, incarnation uint64, key, original, value *common.Hash) error { return nil } func (nw *NoopWriter) CreateContract(address common.Address) error { return nil } // Structure holding updates, deletes, and reads registered within one change period // A change period can be transaction within a block, or a block within group of blocks type Buffer struct { codeReads map[common.Hash]common.Hash codeUpdates map[common.Hash][]byte storageUpdates map[common.Hash]map[common.Hash][]byte storageReads map[common.Hash]map[common.Hash]struct{} accountUpdates map[common.Hash]*accounts.Account accountReads map[common.Hash]struct{} deleted map[common.Hash]struct{} created map[common.Hash]struct{} } // Prepares buffer for work or clears previous data func (b *Buffer) initialise() { b.codeReads = make(map[common.Hash]common.Hash) b.codeUpdates = make(map[common.Hash][]byte) b.storageUpdates = make(map[common.Hash]map[common.Hash][]byte) b.storageReads = make(map[common.Hash]map[common.Hash]struct{}) b.accountUpdates = make(map[common.Hash]*accounts.Account) b.accountReads = make(map[common.Hash]struct{}) b.deleted = make(map[common.Hash]struct{}) b.created = make(map[common.Hash]struct{}) } // Replaces account pointer with pointers to the copies func (b *Buffer) detachAccounts() { for addrHash, account := range b.accountUpdates { if account != nil { b.accountUpdates[addrHash] = account.SelfCopy() } } } // Merges the content of another buffer into this one func (b *Buffer) merge(other *Buffer) { for addrHash, codeHash := range other.codeReads { b.codeReads[addrHash] = codeHash } for addrHash, code := range other.codeUpdates { b.codeUpdates[addrHash] = code } for addrHash, om := range other.storageUpdates { m, ok := b.storageUpdates[addrHash] if !ok { m = make(map[common.Hash][]byte) b.storageUpdates[addrHash] = m } for keyHash, v := range om { m[keyHash] = v } } for addrHash, om := range other.storageReads { m, ok := b.storageReads[addrHash] if !ok { m = make(map[common.Hash]struct{}) b.storageReads[addrHash] = m } for keyHash := range om { m[keyHash] = struct{}{} } } for addrHash, account := range other.accountUpdates { b.accountUpdates[addrHash] = account } for addrHash := range other.accountReads { b.accountReads[addrHash] = struct{}{} } for addrHash := range other.deleted { b.deleted[addrHash] = struct{}{} } for addrHash := range other.created { b.created[addrHash] = struct{}{} } } // TrieDbState implements StateReader by wrapping a trie and a database, where trie acts as a cache for the database type TrieDbState struct { t *trie.Trie tMu *sync.Mutex db ethdb.Database blockNr uint64 buffers []*Buffer aggregateBuffer *Buffer // Merge of all buffers currentBuffer *Buffer historical bool noHistory bool resolveReads bool savePreimages bool resolveSetBuilder *trie.ResolveSetBuilder tp *trie.TriePruning newStream trie.Stream hashBuilder *trie.HashBuilder resolver *trie.Resolver incarnationMap map[common.Hash]uint64 // Temporary map of incarnation in case we cannot figure out from the database } func NewTrieDbState(root common.Hash, db ethdb.Database, blockNr uint64) *TrieDbState { t := trie.New(root) tp := trie.NewTriePruning(blockNr) tds := &TrieDbState{ t: t, tMu: new(sync.Mutex), db: db, blockNr: blockNr, resolveSetBuilder: trie.NewResolveSetBuilder(), tp: tp, savePreimages: true, hashBuilder: trie.NewHashBuilder(false), incarnationMap: make(map[common.Hash]uint64), } t.SetTouchFunc(tp.Touch) tp.SetUnloadNodeFunc(tds.putIntermediateHash) tp.SetCreateNodeFunc(tds.delIntermediateHash) return tds } func (tds *TrieDbState) EnablePreimages(ep bool) { tds.savePreimages = ep } func (tds *TrieDbState) SetHistorical(h bool) { tds.historical = h } func (tds *TrieDbState) SetResolveReads(rr bool) { tds.resolveReads = rr } func (tds *TrieDbState) SetNoHistory(nh bool) { tds.noHistory = nh } func (tds *TrieDbState) Copy() *TrieDbState { tds.tMu.Lock() tcopy := *tds.t tds.tMu.Unlock() n := tds.getBlockNr() tp := trie.NewTriePruning(n) cpy := TrieDbState{ t: &tcopy, tMu: new(sync.Mutex), db: tds.db, blockNr: n, tp: tp, hashBuilder: trie.NewHashBuilder(false), incarnationMap: make(map[common.Hash]uint64), } cpy.tp.SetUnloadNodeFunc(cpy.putIntermediateHash) cpy.tp.SetCreateNodeFunc(cpy.delIntermediateHash) return &cpy } func (tds *TrieDbState) putIntermediateHash(key []byte, nodeHash []byte) { if err := tds.db.Put(dbutils.IntermediateTrieHashBucket, common.CopyBytes(key), common.CopyBytes(nodeHash)); err != nil { log.Warn("could not put intermediate trie hash", "err", err) } } func (tds *TrieDbState) delIntermediateHash(prefixAsNibbles []byte) { if len(prefixAsNibbles) == 0 { return } if len(prefixAsNibbles)%2 == 1 { // only put to bucket prefixes with even number of nibbles return } key := make([]byte, len(prefixAsNibbles)/2) trie.CompressNibbles(prefixAsNibbles, &key) if err := tds.db.Delete(dbutils.IntermediateTrieHashBucket, key); err != nil { log.Warn("could not delete intermediate trie hash", "err", err) return } } func (tds *TrieDbState) Database() ethdb.Database { return tds.db } func (tds *TrieDbState) Trie() *trie.Trie { return tds.t } func (tds *TrieDbState) StartNewBuffer() { if tds.currentBuffer != nil { if tds.aggregateBuffer == nil { tds.aggregateBuffer = &Buffer{} tds.aggregateBuffer.initialise() } tds.aggregateBuffer.merge(tds.currentBuffer) tds.currentBuffer.detachAccounts() } tds.currentBuffer = &Buffer{} tds.currentBuffer.initialise() tds.buffers = append(tds.buffers, tds.currentBuffer) } func (tds *TrieDbState) WithNewBuffer() *TrieDbState { aggregateBuffer := &Buffer{} aggregateBuffer.initialise() currentBuffer := &Buffer{} currentBuffer.initialise() buffers := []*Buffer{currentBuffer} tds.tMu.Lock() t := &TrieDbState{ t: tds.t, tMu: tds.tMu, db: tds.db, blockNr: tds.getBlockNr(), buffers: buffers, aggregateBuffer: aggregateBuffer, currentBuffer: currentBuffer, historical: tds.historical, noHistory: tds.noHistory, resolveReads: tds.resolveReads, resolveSetBuilder: tds.resolveSetBuilder, tp: tds.tp, hashBuilder: trie.NewHashBuilder(false), } tds.tMu.Unlock() return t } func (tds *TrieDbState) LastRoot() common.Hash { if tds == nil || tds.tMu == nil { return common.Hash{} } tds.tMu.Lock() defer tds.tMu.Unlock() return tds.t.Hash() } // ComputeTrieRoots is a combination of `ResolveStateTrie` and `UpdateStateTrie` // DESCRIBED: docs/programmers_guide/guide.md#organising-ethereum-state-into-a-merkle-tree func (tds *TrieDbState) ComputeTrieRoots() ([]common.Hash, error) { if _, err := tds.ResolveStateTrie(false, false); err != nil { return nil, err } return tds.UpdateStateTrie() } // UpdateStateTrie assumes that the state trie is already fully resolved, i.e. any operations // will find necessary data inside the trie. func (tds *TrieDbState) UpdateStateTrie() ([]common.Hash, error) { tds.tMu.Lock() defer tds.tMu.Unlock() roots, err := tds.updateTrieRoots(true) tds.clearUpdates() return roots, err } func (tds *TrieDbState) PrintTrie(w io.Writer) { tds.tMu.Lock() defer tds.tMu.Unlock() tds.t.Print(w) fmt.Fprintln(w, "") //nolint } // Builds a map where for each address (of a smart contract) there is // a sorted list of all key hashes that were touched within the // period for which we are aggregating updates func (tds *TrieDbState) buildStorageTouches(withReads bool, withValues bool) (common.StorageKeys, [][]byte) { storageTouches := common.StorageKeys{} var values [][]byte for addrHash, m := range tds.aggregateBuffer.storageUpdates { if withValues { if _, ok := tds.aggregateBuffer.deleted[addrHash]; ok { continue } } for keyHash := range m { var storageKey common.StorageKey copy(storageKey[:], addrHash[:]) copy(storageKey[common.HashLength:], keyHash[:]) storageTouches = append(storageTouches, storageKey) } } if withReads { for addrHash, m := range tds.aggregateBuffer.storageReads { mWrite := tds.aggregateBuffer.storageUpdates[addrHash] for keyHash := range m { if mWrite != nil { if _, ok := mWrite[keyHash]; ok { // Avoid repeating the same storage keys if they are both read and updated continue } } var storageKey common.StorageKey copy(storageKey[:], addrHash[:]) copy(storageKey[common.HashLength:], keyHash[:]) storageTouches = append(storageTouches, storageKey) } } } sort.Sort(storageTouches) if withValues { // We assume that if withValues == true, then withReads == false var addrHash common.Hash var keyHash common.Hash for _, storageKey := range storageTouches { copy(addrHash[:], storageKey[:]) copy(keyHash[:], storageKey[common.HashLength:]) values = append(values, tds.aggregateBuffer.storageUpdates[addrHash][keyHash]) } } return storageTouches, values } // Expands the storage tries (by loading data from the database) if it is required // for accessing storage slots containing in the storageTouches map func (tds *TrieDbState) resolveStorageTouches(storageTouches common.StorageKeys, resolveFunc func(*trie.Resolver) error) error { var firstRequest = true for _, storageKey := range storageTouches { if need, req := tds.t.NeedResolution(storageKey[:common.HashLength], storageKey[:]); need { if tds.resolver == nil { tds.resolver = trie.NewResolver(0, false, tds.blockNr) tds.resolver.SetHistorical(tds.historical) } else if firstRequest { tds.resolver.Reset(0, false, tds.blockNr) } firstRequest = false tds.resolver.AddRequest(req) } } if !firstRequest { res := resolveFunc(tds.resolver) return res } return nil } // Populate pending block proof so that it will be sufficient for accessing all storage slots in storageTouches func (tds *TrieDbState) populateStorageBlockProof(storageTouches common.StorageKeys) error { //nolint for _, storageKey := range storageTouches { tds.resolveSetBuilder.AddStorageTouch(storageKey[:]) } return nil } func (tds *TrieDbState) buildCodeTouches(withReads bool) map[common.Hash]common.Hash { return tds.aggregateBuffer.codeReads } // Builds a sorted list of all address hashes that were touched within the // period for which we are aggregating updates func (tds *TrieDbState) buildAccountTouches(withReads bool, withValues bool) (common.Hashes, []*accounts.Account) { accountTouches := common.Hashes{} var aValues []*accounts.Account for addrHash, aValue := range tds.aggregateBuffer.accountUpdates { if aValue != nil { if _, ok := tds.aggregateBuffer.deleted[addrHash]; ok { accountTouches = append(accountTouches, addrHash) } } accountTouches = append(accountTouches, addrHash) } if withReads { for addrHash := range tds.aggregateBuffer.accountReads { if _, ok := tds.aggregateBuffer.accountUpdates[addrHash]; !ok { accountTouches = append(accountTouches, addrHash) } } } sort.Sort(accountTouches) if withValues { // We assume that if withValues == true, then withReads == false aValues = make([]*accounts.Account, len(accountTouches)) for i, addrHash := range accountTouches { if i < len(accountTouches)-1 && addrHash == accountTouches[i+1] { aValues[i] = nil // Entry that would wipe out existing storage } else { a := tds.aggregateBuffer.accountUpdates[addrHash] if a != nil { if _, ok := tds.aggregateBuffer.storageUpdates[addrHash]; ok { var ac accounts.Account ac.Copy(a) ac.Root = trie.EmptyRoot a = &ac } } aValues[i] = a } } } return accountTouches, aValues } func (tds *TrieDbState) resolveCodeTouches(codeTouches map[common.Hash]common.Hash, resolveFunc trie.ResolveFunc) error { firstRequest := true for address, codeHash := range codeTouches { if need, req := tds.t.NeedResolutonForCode(address, codeHash); need { if tds.resolver == nil { tds.resolver = trie.NewResolver(0, true, tds.blockNr) tds.resolver.SetHistorical(tds.historical) } else if firstRequest { tds.resolver.Reset(0, true, tds.blockNr) } firstRequest = false tds.resolver.AddCodeRequest(req) } } if !firstRequest { return resolveFunc(tds.resolver) } return nil } // Expands the accounts trie (by loading data from the database) if it is required // for accessing accounts whose addresses are contained in the accountTouches func (tds *TrieDbState) resolveAccountTouches(accountTouches common.Hashes, resolveFunc trie.ResolveFunc) error { var firstRequest = true for _, addrHash := range accountTouches { if need, req := tds.t.NeedResolution(nil, addrHash[:]); need { if tds.resolver == nil { tds.resolver = trie.NewResolver(0, true, tds.blockNr) tds.resolver.SetHistorical(tds.historical) } else if firstRequest { tds.resolver.Reset(0, true, tds.blockNr) } firstRequest = false tds.resolver.AddRequest(req) } } if !firstRequest { return resolveFunc(tds.resolver) } return nil } func (tds *TrieDbState) populateAccountBlockProof(accountTouches common.Hashes) { for _, addrHash := range accountTouches { a := addrHash tds.resolveSetBuilder.AddTouch(a[:]) } } // ExtractTouches returns two lists of keys - for accounts and storage items correspondingly // Each list is the collection of keys that have been "touched" (inserted, updated, or simply accessed) // since the last invocation of `ExtractTouches`. func (tds *TrieDbState) ExtractTouches() (accountTouches [][]byte, storageTouches [][]byte) { return tds.resolveSetBuilder.ExtractTouches() } func (tds *TrieDbState) resolveStateTrieWithFunc(resolveFunc trie.ResolveFunc) error { // Aggregating the current buffer, if any if tds.currentBuffer != nil { if tds.aggregateBuffer == nil { tds.aggregateBuffer = &Buffer{} tds.aggregateBuffer.initialise() } tds.aggregateBuffer.merge(tds.currentBuffer) } if tds.aggregateBuffer == nil { return nil } tds.tMu.Lock() defer tds.tMu.Unlock() // Prepare (resolve) storage tries so that actual modifications can proceed without database access storageTouches, _ := tds.buildStorageTouches(tds.resolveReads, false) // Prepare (resolve) accounts trie so that actual modifications can proceed without database access accountTouches, _ := tds.buildAccountTouches(tds.resolveReads, false) // Prepare (resolve) contract code reads so that actual modifications can proceed without database access codeTouches := tds.buildCodeTouches(tds.resolveReads) var err error if err = tds.resolveAccountTouches(accountTouches, resolveFunc); err != nil { return err } if err = tds.resolveCodeTouches(codeTouches, resolveFunc); err != nil { return err } if tds.resolveReads { tds.populateAccountBlockProof(accountTouches) } if err = tds.resolveStorageTouches(storageTouches, resolveFunc); err != nil { return err } if tds.resolveReads { if err := tds.populateStorageBlockProof(storageTouches); err != nil { return err } } return nil } // ResolveStateTrie resolves parts of the state trie that would be necessary for any updates // (and reads, if `resolveReads` is set). func (tds *TrieDbState) ResolveStateTrie(extractWitnesses bool, trace bool) ([]*trie.Witness, error) { var witnesses []*trie.Witness resolveFunc := func(resolver *trie.Resolver) error { if resolver == nil { return nil } resolver.CollectWitnesses(extractWitnesses) if err := resolver.ResolveWithDb(tds.db, tds.blockNr, trace); err != nil { return err } if !extractWitnesses { return nil } resolverWitnesses := resolver.PopCollectedWitnesses() if len(resolverWitnesses) == 0 { return nil } if witnesses == nil { witnesses = resolverWitnesses } else { witnesses = append(witnesses, resolverWitnesses...) } return nil } if err := tds.resolveStateTrieWithFunc(resolveFunc); err != nil { return nil, err } return witnesses, nil } // ResolveStateTrieStateless uses a witness DB to resolve subtries func (tds *TrieDbState) ResolveStateTrieStateless(database trie.WitnessStorage) error { var startPos int64 resolveFunc := func(resolver *trie.Resolver) error { if resolver == nil { return nil } pos, err := resolver.ResolveStateless(database, tds.blockNr, MaxTrieCacheGen, startPos) if err != nil { return err } startPos = pos return nil } return tds.resolveStateTrieWithFunc(resolveFunc) } // CalcTrieRoots calculates trie roots without modifying the state trie func (tds *TrieDbState) CalcTrieRoots(trace bool) (common.Hash, error) { tds.tMu.Lock() defer tds.tMu.Unlock() // Retrive the list of inserted/updated/deleted storage items (keys and values) storageKeys, sValues := tds.buildStorageTouches(false, true) if trace { fmt.Printf("len(storageKeys)=%d, len(sValues)=%d\n", len(storageKeys), len(sValues)) } // Retrive the list of inserted/updated/deleted accounts (keys and values) accountKeys, aValues := tds.buildAccountTouches(false, true) if trace { fmt.Printf("len(accountKeys)=%d, len(aValues)=%d\n", len(accountKeys), len(aValues)) } return trie.HashWithModifications(tds.t, accountKeys, aValues, storageKeys, sValues, common.HashLength, &tds.newStream, tds.hashBuilder, trace) } // forward is `true` if the function is used to progress the state forward (by adding blocks) // forward is `false` if the function is used to rewind the state (for reorgs, for example) func (tds *TrieDbState) updateTrieRoots(forward bool) ([]common.Hash, error) { accountUpdates := tds.aggregateBuffer.accountUpdates // Perform actual updates on the tries, and compute one trie root per buffer // These roots can be used to populate receipt.PostState on pre-Byzantium roots := make([]common.Hash, len(tds.buffers)) // The following map is to prevent repeated clearouts of the storage alreadyCreated := make(map[common.Hash]struct{}) for i, b := range tds.buffers { // New contracts are being created at these addresses. Therefore, we need to clear the storage items // that might be remaining in the trie and figure out the next incarnations for addrHash := range b.created { // Prevent repeated storage clearouts if _, ok := alreadyCreated[addrHash]; ok { continue } alreadyCreated[addrHash] = struct{}{} if account, ok := b.accountUpdates[addrHash]; ok && account != nil { b.accountUpdates[addrHash].Root = trie.EmptyRoot } if account, ok := tds.aggregateBuffer.accountUpdates[addrHash]; ok && account != nil { tds.aggregateBuffer.accountUpdates[addrHash].Root = trie.EmptyRoot } //fmt.Println("updateTrieRoots del subtree", addrHash.String()) // The only difference between Delete and DeleteSubtree is that Delete would delete accountNode too, // wherewas DeleteSubtree will keep the accountNode, but will make the storage sub-trie empty tds.t.DeleteSubtree(addrHash[:]) } for addrHash, account := range b.accountUpdates { if account != nil { //fmt.Println("updateTrieRoots b.accountUpdates", addrHash.String(), account.Incarnation) tds.t.UpdateAccount(addrHash[:], account) } else { tds.t.Delete(addrHash[:]) delete(b.codeUpdates, addrHash) } } for addrHash, newCode := range b.codeUpdates { if err := tds.t.UpdateAccountCode(addrHash[:], newCode); err != nil { return nil, err } } for addrHash, m := range b.storageUpdates { for keyHash, v := range m { cKey := dbutils.GenerateCompositeTrieKey(addrHash, keyHash) if len(v) > 0 { //fmt.Printf("Update storage trie addrHash %x, keyHash %x: %x\n", addrHash, keyHash, v) if forward { tds.t.Update(cKey, v) } else { // If rewinding, it might not be possible to execute storage item update. // If we rewind from the state where a contract does not exist anymore (it was self-destructed) // to the point where it existed (with storage), then rewinding to the point of existence // will not bring back the full storage trie. Instead there will be one hashNode. // So we probe for this situation first if _, ok := tds.t.Get(cKey); ok { tds.t.Update(cKey, v) } } } else { if forward { tds.t.Delete(cKey) } else { // If rewinding, it might not be possible to execute storage item update. // If we rewind from the state where a contract does not exist anymore (it was self-destructed) // to the point where it existed (with storage), then rewinding to the point of existence // will not bring back the full storage trie. Instead there will be one hashNode. // So we probe for this situation first if _, ok := tds.t.Get(cKey); ok { tds.t.Delete(cKey) } } } } if forward || debug.IsThinHistory() { if account, ok := b.accountUpdates[addrHash]; ok && account != nil { ok, root := tds.t.DeepHash(addrHash[:]) if ok { account.Root = root //fmt.Printf("(b)Set %x root for addrHash %x\n", root, addrHash) } else { //fmt.Printf("(b)Set empty root for addrHash %x\n", addrHash) account.Root = trie.EmptyRoot } } if account, ok := accountUpdates[addrHash]; ok && account != nil { ok, root := tds.t.DeepHash(addrHash[:]) if ok { account.Root = root //fmt.Printf("Set %x root for addrHash %x\n", root, addrHash) } else { //fmt.Printf("Set empty root for addrHash %x\n", addrHash) account.Root = trie.EmptyRoot } } } else { // Simply comparing the correctness of the storageRoot computations if account, ok := b.accountUpdates[addrHash]; ok && account != nil { ok, h := tds.t.DeepHash(addrHash[:]) if !ok { h = trie.EmptyRoot } if account.Root != h { return nil, fmt.Errorf("mismatched storage root for %x: expected %x, got %x", addrHash, account.Root, h) } } if account, ok := accountUpdates[addrHash]; ok && account != nil { ok, h := tds.t.DeepHash(addrHash[:]) if !ok { h = trie.EmptyRoot } if account.Root != h { return nil, fmt.Errorf("mismatched storage root for %x: expected %x, got %x", addrHash, account.Root, h) } } } } // For the contracts that got deleted for addrHash := range b.deleted { if _, ok := b.created[addrHash]; ok { // In some rather artificial circumstances, an account can be recreated after having been self-destructed // in the same block. It can only happen when contract is introduced in the genesis state with nonce 0 // rather than created by a transaction (in that case, its starting nonce is 1). The self-destructed // contract actually gets removed from the state only at the end of the block, so if its nonce is not 0, // it will prevent any re-creation within the same block. However, if the contract is introduced in // the genesis state, its nonce is 0, and that means it can be self-destructed, and then re-created, // all in the same block. In such cases, we must preserve storage modifications happening after the // self-destruction continue } if account, ok := b.accountUpdates[addrHash]; ok && account != nil { //fmt.Printf("(b)Set empty root for addrHash %x due to deleted\n", addrHash) account.Root = trie.EmptyRoot } if account, ok := accountUpdates[addrHash]; ok && account != nil { //fmt.Printf("Set empty root for addrHash %x due to deleted\n", addrHash) account.Root = trie.EmptyRoot } tds.t.DeleteSubtree(addrHash[:]) } roots[i] = tds.t.Hash() } return roots, nil } func (tds *TrieDbState) clearUpdates() { tds.buffers = nil tds.currentBuffer = nil tds.aggregateBuffer = nil } func (tds *TrieDbState) SetBlockNr(blockNr uint64) { tds.setBlockNr(blockNr) tds.tp.SetBlockNr(blockNr) } func (tds *TrieDbState) GetBlockNr() uint64 { return tds.getBlockNr() } func (tds *TrieDbState) UnwindTo(blockNr uint64) error { tds.StartNewBuffer() b := tds.currentBuffer if err := tds.db.RewindData(tds.blockNr, blockNr, func(bucket, key, value []byte) error { //fmt.Printf("bucket: %x, key: %x, value: %x\n", bucket, key, value) if bytes.Equal(bucket, dbutils.AccountsHistoryBucket) { var addrHash common.Hash copy(addrHash[:], key) if len(value) > 0 { var acc accounts.Account if err := acc.DecodeForStorage(value); err != nil { return err } // Fetch the code hash if acc.Incarnation > 0 && debug.IsThinHistory() && acc.IsEmptyCodeHash() { if codeHash, err := tds.db.Get(dbutils.ContractCodeBucket, dbutils.GenerateStoragePrefix(addrHash, acc.Incarnation)); err == nil { copy(acc.CodeHash[:], codeHash) } } b.accountUpdates[addrHash] = &acc value = make([]byte, acc.EncodingLengthForStorage()) acc.EncodeForStorage(value) if err := tds.db.Put(dbutils.AccountsBucket, addrHash[:], value); err != nil { return err } } else { b.accountUpdates[addrHash] = nil if err := tds.db.Delete(dbutils.AccountsBucket, addrHash[:]); err != nil { return err } } } else if bytes.Equal(bucket, dbutils.StorageHistoryBucket) { var addrHash common.Hash copy(addrHash[:], key[:common.HashLength]) var keyHash common.Hash copy(keyHash[:], key[common.HashLength+common.IncarnationLength:]) m, ok := b.storageUpdates[addrHash] if !ok { m = make(map[common.Hash][]byte) b.storageUpdates[addrHash] = m } if len(value) > 0 { m[keyHash] = value if err := tds.db.Put(dbutils.StorageBucket, key[:common.HashLength+common.IncarnationLength+common.HashLength], value); err != nil { return err } } else { m[keyHash] = nil if err := tds.db.Delete(dbutils.StorageBucket, key[:common.HashLength+common.IncarnationLength+common.HashLength]); err != nil { return err } } } return nil }); err != nil { return err } if _, err := tds.ResolveStateTrie(false, false); err != nil { return err } tds.tMu.Lock() defer tds.tMu.Unlock() if _, err := tds.updateTrieRoots(false); err != nil { return err } for i := tds.blockNr; i > blockNr; i-- { if err := tds.db.DeleteTimestamp(i); err != nil { return err } } tds.clearUpdates() tds.setBlockNr(blockNr) return nil } func (tds *TrieDbState) readAccountDataByHash(addrHash common.Hash) (*accounts.Account, error) { if acc, ok := tds.GetAccount(addrHash); ok { return acc, nil } // Not present in the trie, try the database var err error var enc []byte if tds.historical { enc, err = tds.db.GetAsOf(dbutils.AccountsBucket, dbutils.AccountsHistoryBucket, addrHash[:], tds.blockNr+1) if err != nil { enc = nil } } else { enc, err = tds.db.Get(dbutils.AccountsBucket, addrHash[:]) if err != nil { enc = nil } } if len(enc) == 0 { return nil, nil } var a accounts.Account if err := a.DecodeForStorage(enc); err != nil { return nil, err } if tds.historical && debug.IsThinHistory() && a.Incarnation > 0 { codeHash, err := tds.db.Get(dbutils.ContractCodeBucket, dbutils.GenerateStoragePrefix(addrHash, a.Incarnation)) if err == nil { a.CodeHash = common.BytesToHash(codeHash) } else { log.Error("Get code hash is incorrect", "err", err) } } return &a, nil } func (tds *TrieDbState) GetAccount(addrHash common.Hash) (*accounts.Account, bool) { tds.tMu.Lock() defer tds.tMu.Unlock() acc, ok := tds.t.GetAccount(addrHash[:]) return acc, ok } func (tds *TrieDbState) ReadAccountData(address common.Address) (*accounts.Account, error) { addrHash, err := common.HashData(address[:]) if err != nil { return nil, err } if tds.resolveReads { if _, ok := tds.currentBuffer.accountUpdates[addrHash]; !ok { tds.currentBuffer.accountReads[addrHash] = struct{}{} } } return tds.readAccountDataByHash(addrHash) } func (tds *TrieDbState) savePreimage(save bool, hash, preimage []byte) error { if !save || !tds.savePreimages { return nil } // Following check is to minimise the overwriting the same value of preimage // in the database, which would cause extra write churn if p, _ := tds.db.Get(dbutils.PreimagePrefix, hash); p != nil { return nil } return tds.db.Put(dbutils.PreimagePrefix, hash, preimage) } func (tds *TrieDbState) HashAddress(address common.Address, save bool) (common.Hash, error) { addrHash, err := common.HashData(address[:]) if err != nil { return common.Hash{}, err } return addrHash, tds.savePreimage(save, addrHash[:], address[:]) } func (tds *TrieDbState) HashKey(key *common.Hash, save bool) (common.Hash, error) { keyHash, err := common.HashData(key[:]) if err != nil { return common.Hash{}, err } return keyHash, tds.savePreimage(save, keyHash[:], key[:]) } func (tds *TrieDbState) GetKey(shaKey []byte) []byte { key, _ := tds.db.Get(dbutils.PreimagePrefix, shaKey) return key } func (tds *TrieDbState) ReadAccountStorage(address common.Address, incarnation uint64, key *common.Hash) ([]byte, error) { addrHash, err := tds.HashAddress(address, false /*save*/) if err != nil { return nil, err } if tds.currentBuffer != nil { if _, ok := tds.currentBuffer.deleted[addrHash]; ok { return nil, nil } } if tds.aggregateBuffer != nil { if _, ok := tds.aggregateBuffer.deleted[addrHash]; ok { return nil, nil } } seckey, err := tds.HashKey(key, false /*save*/) if err != nil { return nil, err } if tds.resolveReads { var addReadRecord = false if mWrite, ok := tds.currentBuffer.storageUpdates[addrHash]; ok { if _, ok1 := mWrite[seckey]; !ok1 { addReadRecord = true } } else { addReadRecord = true } if addReadRecord { m, ok := tds.currentBuffer.storageReads[addrHash] if !ok { m = make(map[common.Hash]struct{}) tds.currentBuffer.storageReads[addrHash] = m } m[seckey] = struct{}{} } } tds.tMu.Lock() defer tds.tMu.Unlock() enc, ok := tds.t.Get(dbutils.GenerateCompositeTrieKey(addrHash, seckey)) if !ok { // Not present in the trie, try database if tds.historical { enc, err = tds.db.GetAsOf(dbutils.StorageBucket, dbutils.StorageHistoryBucket, dbutils.GenerateCompositeStorageKey(addrHash, incarnation, seckey), tds.blockNr) if err != nil { enc = nil } } else { enc, err = tds.db.Get(dbutils.StorageBucket, dbutils.GenerateCompositeStorageKey(addrHash, incarnation, seckey)) if err != nil { enc = nil } } } return enc, nil } func (tds *TrieDbState) ReadCodeByHash(codeHash common.Hash) (code []byte, err error) { if bytes.Equal(codeHash[:], emptyCodeHash) { return nil, nil } code, err = tds.db.Get(dbutils.CodeBucket, codeHash[:]) if tds.resolveReads { // we have to be careful, because the code might change // during the block executuion, so we are always // storing the latest code hash tds.resolveSetBuilder.ReadCode(codeHash) } return code, err } func (tds *TrieDbState) readAccountCodeFromTrie(addrHash []byte) ([]byte, bool) { tds.tMu.Lock() defer tds.tMu.Unlock() return tds.t.GetAccountCode(addrHash) } func (tds *TrieDbState) ReadAccountCode(address common.Address, codeHash common.Hash) (code []byte, err error) { if bytes.Equal(codeHash[:], emptyCodeHash) { return nil, nil } addrHash, err := tds.HashAddress(address, false /*save*/) if err != nil { return nil, err } if cached, ok := tds.readAccountCodeFromTrie(addrHash[:]); ok { code, err = cached, nil } else { code, err = tds.db.Get(dbutils.CodeBucket, codeHash[:]) } if tds.resolveReads { addrHash, err1 := common.HashData(address[:]) if err1 != nil { return nil, err } if _, ok := tds.currentBuffer.accountUpdates[addrHash]; !ok { tds.currentBuffer.accountReads[addrHash] = struct{}{} } // we have to be careful, because the code might change // during the block executuion, so we are always // storing the latest code hash tds.currentBuffer.codeReads[addrHash] = codeHash tds.resolveSetBuilder.ReadCode(codeHash) } return code, err } func (tds *TrieDbState) ReadAccountCodeSize(address common.Address, codeHash common.Hash) (codeSize int, err error) { addrHash, err := tds.HashAddress(address, false /*save*/) if err != nil { return 0, err } if code, ok := tds.readAccountCodeFromTrie(addrHash[:]); ok { codeSize, err = len(code), nil } else { code, err = tds.ReadAccountCode(address, codeHash) if err != nil { return 0, err } codeSize = len(code) } if tds.resolveReads { addrHash, err1 := common.HashData(address[:]) if err1 != nil { return 0, err } if _, ok := tds.currentBuffer.accountUpdates[addrHash]; !ok { tds.currentBuffer.accountReads[addrHash] = struct{}{} } // we have to be careful, because the code might change // during the block executuion, so we are always // storing the latest code hash tds.currentBuffer.codeReads[addrHash] = codeHash tds.resolveSetBuilder.ReadCode(codeHash) } return codeSize, nil } // nextIncarnation determines what should be the next incarnation of an account (i.e. how many time it has existed before at this address) func (tds *TrieDbState) nextIncarnation(addrHash common.Hash) (uint64, error) { var found bool var incarnationBytes [common.IncarnationLength]byte if tds.historical { // We reserve ethdb.MaxTimestampLength (8) at the end of the key to accomodate any possible timestamp // (timestamp's encoding may have variable length) startkey := make([]byte, common.HashLength+common.IncarnationLength+common.HashLength+ethdb.MaxTimestampLength) var fixedbits uint = 8 * common.HashLength copy(startkey, addrHash[:]) if err := tds.db.WalkAsOf(dbutils.StorageBucket, dbutils.StorageHistoryBucket, startkey, fixedbits, tds.blockNr, func(k, _ []byte) (bool, error) { copy(incarnationBytes[:], k[common.HashLength:]) found = true return false, nil }); err != nil { return 0, err } } else { if inc, ok := tds.incarnationMap[addrHash]; ok { return inc + 1, nil } startkey := make([]byte, common.HashLength+common.IncarnationLength+common.HashLength) var fixedbits uint = 8 * common.HashLength copy(startkey, addrHash[:]) if err := tds.db.Walk(dbutils.StorageBucket, startkey, fixedbits, func(k, v []byte) (bool, error) { copy(incarnationBytes[:], k[common.HashLength:]) found = true return false, nil }); err != nil { return 0, err } } if found { return (^binary.BigEndian.Uint64(incarnationBytes[:])) + 1, nil } return FirstContractIncarnation, nil } var prevMemStats runtime.MemStats type TrieStateWriter struct { tds *TrieDbState } func (tds *TrieDbState) PruneTries(print bool) { tds.tMu.Lock() defer tds.tMu.Unlock() tds.incarnationMap = make(map[common.Hash]uint64) if print { prunableNodes := tds.t.CountPrunableNodes() fmt.Printf("[Before] Actual prunable nodes: %d, accounted: %d\n", prunableNodes, tds.tp.NodeCount()) } tds.tp.PruneTo(tds.t, int(MaxTrieCacheGen)) if print { prunableNodes := tds.t.CountPrunableNodes() fmt.Printf("[After] Actual prunable nodes: %d, accounted: %d\n", prunableNodes, tds.tp.NodeCount()) } var m runtime.MemStats runtime.ReadMemStats(&m) log.Info("Memory", "nodes", tds.tp.NodeCount(), "hashes", tds.t.HashMapSize(), "alloc", int(m.Alloc/1024), "sys", int(m.Sys/1024), "numGC", int(m.NumGC)) if print { fmt.Printf("Pruning done. Nodes: %d, alloc: %d, sys: %d, numGC: %d\n", tds.tp.NodeCount(), int(m.Alloc/1024), int(m.Sys/1024), int(m.NumGC)) } } func (tds *TrieDbState) TrieStateWriter() *TrieStateWriter { return &TrieStateWriter{tds: tds} } func (tds *TrieDbState) DbStateWriter() *DbStateWriter { return &DbStateWriter{tds: tds} } func accountsEqual(a1, a2 *accounts.Account) bool { if a1.Nonce != a2.Nonce { return false } if !a1.Initialised { if a2.Initialised { return false } } else if !a2.Initialised { return false } else if a1.Balance.Cmp(&a2.Balance) != 0 { return false } if a1.Root != a2.Root { return false } if a1.CodeHash == (common.Hash{}) { if a2.CodeHash != (common.Hash{}) { return false } } else if a2.CodeHash == (common.Hash{}) { return false } else if a1.CodeHash != a2.CodeHash { return false } return true } func (tsw *TrieStateWriter) UpdateAccountData(_ context.Context, address common.Address, original, account *accounts.Account) error { addrHash, err := tsw.tds.HashAddress(address, false /*save*/) if err != nil { return err } tsw.tds.currentBuffer.accountUpdates[addrHash] = account return nil } func (tsw *TrieStateWriter) DeleteAccount(_ context.Context, address common.Address, original *accounts.Account) error { addrHash, err := tsw.tds.HashAddress(address, false /*save*/) if err != err { return err } tsw.tds.currentBuffer.accountUpdates[addrHash] = nil delete(tsw.tds.currentBuffer.storageUpdates, addrHash) tsw.tds.currentBuffer.deleted[addrHash] = struct{}{} return nil } func (tsw *TrieStateWriter) UpdateAccountCode(addrHash common.Hash, incarnation uint64, codeHash common.Hash, code []byte) error { if tsw.tds.resolveReads { tsw.tds.resolveSetBuilder.CreateCode(codeHash) } tsw.tds.currentBuffer.codeUpdates[addrHash] = code return nil } func (tsw *TrieStateWriter) WriteAccountStorage(_ context.Context, address common.Address, incarnation uint64, key, original, value *common.Hash) error { addrHash, err := tsw.tds.HashAddress(address, false /*save*/) if err != nil { return err } v := bytes.TrimLeft(value[:], "\x00") m, ok := tsw.tds.currentBuffer.storageUpdates[addrHash] if !ok { m = make(map[common.Hash][]byte) tsw.tds.currentBuffer.storageUpdates[addrHash] = m } seckey, err := tsw.tds.HashKey(key, false /*save*/) if err != nil { return err } if len(v) > 0 { m[seckey] = v } else { m[seckey] = nil } //fmt.Printf("WriteAccountStorage %x %x: %x, buffer %d\n", addrHash, seckey, value, len(tsw.tds.buffers)) return nil } // ExtractWitness produces block witness for the block just been processed, in a serialised form func (tds *TrieDbState) ExtractWitness(trace bool, isBinary bool) (*trie.Witness, error) { rs := tds.resolveSetBuilder.Build(isBinary) return tds.makeBlockWitness(trace, rs, isBinary) } // ExtractWitness produces block witness for the block just been processed, in a serialised form func (tds *TrieDbState) ExtractWitnessForPrefix(prefix []byte, trace bool, isBinary bool) (*trie.Witness, error) { rs := tds.resolveSetBuilder.Build(isBinary) return tds.makeBlockWitnessForPrefix(prefix, trace, rs, isBinary) } func (tds *TrieDbState) makeBlockWitnessForPrefix(prefix []byte, trace bool, rs *trie.ResolveSet, isBinary bool) (*trie.Witness, error) { tds.tMu.Lock() defer tds.tMu.Unlock() t := tds.t if isBinary { t = trie.HexToBin(tds.t).Trie() } return t.ExtractWitnessForPrefix(prefix, tds.blockNr, trace, rs) } func (tds *TrieDbState) makeBlockWitness(trace bool, rs *trie.ResolveSet, isBinary bool) (*trie.Witness, error) { tds.tMu.Lock() defer tds.tMu.Unlock() t := tds.t if isBinary { t = trie.HexToBin(tds.t).Trie() } return t.ExtractWitness(tds.blockNr, trace, rs) } func (tsw *TrieStateWriter) CreateContract(address common.Address) error { addrHash, err := tsw.tds.HashAddress(address, true /*save*/) if err != nil { return err } tsw.tds.currentBuffer.created[addrHash] = struct{}{} if account, ok := tsw.tds.currentBuffer.accountUpdates[addrHash]; ok && account != nil { incarnation, err := tsw.tds.nextIncarnation(addrHash) if err != nil { return err } account.SetIncarnation(incarnation) tsw.tds.incarnationMap[addrHash] = incarnation } return nil } func (tds *TrieDbState) TriePruningDebugDump() string { return tds.tp.DebugDump() } func (tds *TrieDbState) getBlockNr() uint64 { return atomic.LoadUint64(&tds.blockNr) } func (tds *TrieDbState) setBlockNr(n uint64) { atomic.StoreUint64(&tds.blockNr, n) } // GetNodeByHash gets node's RLP by hash. func (tds *TrieDbState) GetNodeByHash(hash common.Hash) []byte { tds.tMu.Lock() defer tds.tMu.Unlock() return tds.t.GetNodeByHash(hash) }