// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package ethash implements the ethash proof-of-work consensus engine. package ethash import ( "errors" "fmt" "math/big" "math/rand" "os" "path/filepath" "reflect" "runtime" "strconv" "sync" "sync/atomic" "unsafe" "github.com/edsrzf/mmap-go" "github.com/hashicorp/golang-lru/simplelru" "github.com/ledgerwatch/erigon/common/debug" "github.com/ledgerwatch/erigon/consensus" "github.com/ledgerwatch/erigon/metrics" "github.com/ledgerwatch/erigon/rpc" "github.com/ledgerwatch/log/v3" ) const doNotStoreCachesOnDisk = "" var ErrInvalidDumpMagic = errors.New("invalid dump magic") var ( // two256 is a big integer representing 2^256 two256 = new(big.Int).Exp(big.NewInt(2), big.NewInt(256), big.NewInt(0)) // sharedEthash is a full instance that can be shared between multiple users. sharedEthashOnce sync.Once sharedEthash *Ethash // algorithmRevision is the data structure version used for file naming. algorithmRevision = 23 // dumpMagic is a dataset dump header to sanity check a data dump. dumpMagic = []uint32{0xbaddcafe, 0xfee1dead} ) // sharedEthash is a full instance that can be shared between multiple users. func GetSharedEthash() *Ethash { sharedEthashOnce.Do(func() { sharedConfig := Config{ PowMode: ModeNormal, CachesInMem: 3, DatasetsInMem: 1, } sharedEthash = New(sharedConfig, nil, false) }) return sharedEthash } // isLittleEndian returns whether the local system is running in little or big // endian byte order. func isLittleEndian() bool { n := uint32(0x01020304) return *(*byte)(unsafe.Pointer(&n)) == 0x04 } // memoryMap tries to memory map a file of uint32s for read only access. func memoryMap(path string, lock bool) (*os.File, mmap.MMap, []uint32, error) { file, err := os.OpenFile(path, os.O_RDONLY, 0644) if err != nil { return nil, nil, nil, err } mem, buffer, err := memoryMapFile(file, false) if err != nil { file.Close() return nil, nil, nil, err } for i, magic := range dumpMagic { if buffer[i] != magic { mem.Unmap() file.Close() return nil, nil, nil, ErrInvalidDumpMagic } } if lock { if err2 := mem.Lock(); err2 != nil { mem.Unmap() //nolint:errcheck file.Close() return nil, nil, nil, err2 } } return file, mem, buffer[len(dumpMagic):], err } // memoryMapFile tries to memory map an already opened file descriptor. func memoryMapFile(file *os.File, write bool) (mmap.MMap, []uint32, error) { // Try to memory map the file flag := mmap.RDONLY if write { flag = mmap.RDWR } mem, err := mmap.Map(file, flag, 0) if err != nil { return nil, nil, err } // Yay, we managed to memory map the file, here be dragons header := *(*reflect.SliceHeader)(unsafe.Pointer(&mem)) header.Len /= 4 header.Cap /= 4 return mem, *(*[]uint32)(unsafe.Pointer(&header)), nil } // memoryMapAndGenerate tries to memory map a temporary file of uint32s for write // access, fill it with the data from a generator and then move it into the final // path requested. func memoryMapAndGenerate(path string, size uint64, lock bool, generator func(buffer []uint32)) (*os.File, mmap.MMap, []uint32, error) { // Ensure the data folder exists if err := os.MkdirAll(filepath.Dir(path), 0755); err != nil { return nil, nil, nil, err } // Create a huge temporary empty file to fill with data temp := path + "." + strconv.Itoa(rand.Int()) dump, err := os.Create(temp) if err != nil { return nil, nil, nil, err } if err = dump.Truncate(int64(len(dumpMagic))*4 + int64(size)); err != nil { return nil, nil, nil, err } // Memory map the file for writing and fill it with the generator mem, buffer, err := memoryMapFile(dump, true) if err != nil { dump.Close() return nil, nil, nil, err } copy(buffer, dumpMagic) data := buffer[len(dumpMagic):] generator(data) if err := mem.Unmap(); err != nil { return nil, nil, nil, err } if err := dump.Close(); err != nil { return nil, nil, nil, err } if err := os.Rename(temp, path); err != nil { return nil, nil, nil, err } return memoryMap(path, lock) } // lru tracks caches or datasets by their last use time, keeping at most N of them. type lru struct { what string new func(epoch uint64) interface{} mu sync.Mutex // Items are kept in a LRU cache, but there is a special case: // We always keep an item for (highest seen epoch) + 1 as the 'future item'. cache *simplelru.LRU future uint64 futureItem interface{} } // newlru create a new least-recently-used cache for either the verification caches // or the mining datasets. func newlru(what string, maxItems int, new func(epoch uint64) interface{}) *lru { if maxItems <= 0 { maxItems = 1 } cache, _ := simplelru.NewLRU(maxItems, func(key, value interface{}) { log.Trace("Evicted ethash "+what, "epoch", key) }) return &lru{what: what, new: new, cache: cache} } // get retrieves or creates an item for the given epoch. The first return value is always // non-nil. The second return value is non-nil if lru thinks that an item will be useful in // the near future. func (lru *lru) get(epoch uint64) (item, future interface{}) { lru.mu.Lock() defer lru.mu.Unlock() // Get or create the item for the requested epoch. item, ok := lru.cache.Get(epoch) if !ok { if lru.future > 0 && lru.future == epoch { item = lru.futureItem } else { log.Trace("Requiring new ethash "+lru.what, "epoch", epoch) item = lru.new(epoch) } lru.cache.Add(epoch, item) } // Update the 'future item' if epoch is larger than previously seen. if epoch < maxEpoch-1 && lru.future < epoch+1 { log.Trace("Requiring new future ethash "+lru.what, "epoch", epoch+1) future = lru.new(epoch + 1) lru.future = epoch + 1 lru.futureItem = future } return item, future } // cache wraps an ethash cache with some metadata to allow easier concurrent use. type cache struct { epoch uint64 // Epoch for which this cache is relevant dump *os.File // File descriptor of the memory mapped cache mmap mmap.MMap // Memory map itself to unmap before releasing cache []uint32 // The actual cache data content (may be memory mapped) once sync.Once // Ensures the cache is generated only once } // newCache creates a new ethash verification cache and returns it as a plain Go // interface to be usable in an LRU cache. func newCache(epoch uint64) interface{} { return &cache{epoch: epoch} } // generate ensures that the cache content is generated before use. func (c *cache) generate(dir string, limit int, lock bool, test bool) { c.once.Do(func() { defer debug.LogPanic() size := cacheSize(c.epoch*epochLength + 1) seed := seedHash(c.epoch*epochLength + 1) if test { size = 1024 } // If we don't store anything on disk, generate and return. if dir == "" { c.cache = make([]uint32, size/4) generateCache(c.cache, c.epoch, seed) return } // Disk storage is needed, this will get fancy var endian string if !isLittleEndian() { endian = ".be" } path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian)) logger := log.New("epoch", c.epoch) // We're about to mmap the file, ensure that the mapping is cleaned up when the // cache becomes unused. runtime.SetFinalizer(c, (*cache).finalizer) // Try to load the file from disk and memory map it var err error c.dump, c.mmap, c.cache, err = memoryMap(path, lock) if err == nil { logger.Debug("Loaded old ethash cache from disk") return } logger.Debug("Failed to load old ethash cache", "err", err) // No previous cache available, create a new cache file to fill c.dump, c.mmap, c.cache, err = memoryMapAndGenerate(path, size, lock, func(buffer []uint32) { generateCache(buffer, c.epoch, seed) }) if err != nil { logger.Error("Failed to generate mapped ethash cache", "err", err) c.cache = make([]uint32, size/4) generateCache(c.cache, c.epoch, seed) } // Iterate over all previous instances and delete old ones for ep := int(c.epoch) - limit; ep >= 0; ep-- { seed := seedHash(uint64(ep)*epochLength + 1) path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian)) os.Remove(path) } }) } // finalizer unmaps the memory and closes the file. func (c *cache) finalizer() { if c.mmap != nil { c.mmap.Unmap() c.dump.Close() c.mmap, c.dump = nil, nil } } // dataset wraps an ethash dataset with some metadata to allow easier concurrent use. type dataset struct { epoch uint64 // Epoch for which this cache is relevant dump *os.File // File descriptor of the memory mapped cache mmap mmap.MMap // Memory map itself to unmap before releasing dataset []uint32 // The actual cache data content once sync.Once // Ensures the cache is generated only once done uint32 // Atomic flag to determine generation status } // newDataset creates a new ethash mining dataset and returns it as a plain Go // interface to be usable in an LRU cache. func newDataset(epoch uint64) interface{} { return &dataset{epoch: epoch} } // generate ensures that the dataset content is generated before use. func (d *dataset) generate(dir string, limit int, lock bool, test bool) { d.once.Do(func() { // Mark the dataset generated after we're done. This is needed for remote defer atomic.StoreUint32(&d.done, 1) csize := cacheSize(d.epoch*epochLength + 1) dsize := datasetSize(d.epoch*epochLength + 1) seed := seedHash(d.epoch*epochLength + 1) if test { csize = 1024 dsize = 32 * 1024 } // If we don't store anything on disk, generate and return if dir == "" { cache := make([]uint32, csize/4) generateCache(cache, d.epoch, seed) d.dataset = make([]uint32, dsize/4) generateDataset(d.dataset, d.epoch, cache) return } // Disk storage is needed, this will get fancy var endian string if !isLittleEndian() { endian = ".be" } path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian)) logger := log.New("epoch", d.epoch) // We're about to mmap the file, ensure that the mapping is cleaned up when the // cache becomes unused. runtime.SetFinalizer(d, (*dataset).finalizer) // Try to load the file from disk and memory map it var err error d.dump, d.mmap, d.dataset, err = memoryMap(path, lock) if err == nil { logger.Debug("Loaded old ethash dataset from disk") return } logger.Debug("Failed to load old ethash dataset", "err", err) // No previous dataset available, create a new dataset file to fill cache := make([]uint32, csize/4) generateCache(cache, d.epoch, seed) d.dump, d.mmap, d.dataset, err = memoryMapAndGenerate(path, dsize, lock, func(buffer []uint32) { generateDataset(buffer, d.epoch, cache) }) if err != nil { logger.Error("Failed to generate mapped ethash dataset", "err", err) d.dataset = make([]uint32, dsize/2) generateDataset(d.dataset, d.epoch, cache) } // Iterate over all previous instances and delete old ones for ep := int(d.epoch) - limit; ep >= 0; ep-- { seed := seedHash(uint64(ep)*epochLength + 1) path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian)) os.Remove(path) } }) } // generated returns whether this particular dataset finished generating already // or not (it may not have been started at all). This is useful for remote miners // to default to verification caches instead of blocking on DAG generations. func (d *dataset) generated() bool { return atomic.LoadUint32(&d.done) == 1 } // finalizer closes any file handlers and memory maps open. func (d *dataset) finalizer() { if d.mmap != nil { d.mmap.Unmap() d.dump.Close() d.mmap, d.dump = nil, nil } } // Mode defines the type and amount of PoW verification an ethash engine makes. type Mode uint const ( ModeNormal Mode = iota ModeShared ModeTest ModeFake ModeFullFake ) // Config are the configuration parameters of the ethash. type Config struct { CachesInMem int CachesLockMmap bool DatasetDir string DatasetsInMem int DatasetsOnDisk int DatasetsLockMmap bool PowMode Mode // When set, notifications sent by the remote sealer will // be block header JSON objects instead of work package arrays. NotifyFull bool Log log.Logger `toml:"-"` } // Ethash is a consensus engine based on proof-of-work implementing the ethash // algorithm. type Ethash struct { config Config caches *lru // In memory caches to avoid regenerating too often datasets *lru // In memory datasets to avoid regenerating too often // Mining related fields rand *rand.Rand // Properly seeded random source for nonces hashrate metrics.Meter // Meter tracking the average hashrate remote *remoteSealer // The fields below are hooks for testing shared *Ethash // Shared PoW verifier to avoid cache regeneration lock sync.Mutex // Ensures thread safety for the in-memory caches and mining fields closeOnce sync.Once // Ensures exit channel will not be closed twice. } // New creates a full sized ethash PoW scheme and starts a background thread for // remote mining, also optionally notifying a batch of remote services of new work // packages. func New(config Config, notify []string, noverify bool) *Ethash { if config.Log == nil { config.Log = log.Root() } if config.CachesInMem <= 0 { config.Log.Warn("One ethash cache must always be in memory", "requested", config.CachesInMem) config.CachesInMem = 1 } if config.DatasetDir != "" && config.DatasetsOnDisk > 0 { config.Log.Info("Disk storage enabled for ethash DAGs", "dir", config.DatasetDir, "count", config.DatasetsOnDisk) } ethash := &Ethash{ config: config, caches: newlru("cache", config.CachesInMem, newCache), datasets: newlru("dataset", config.DatasetsInMem, newDataset), hashrate: metrics.NewMeterForced(), } if config.PowMode == ModeShared { ethash.shared = GetSharedEthash() } ethash.remote = startRemoteSealer(ethash, notify, noverify) return ethash } // NewTester creates a small sized ethash PoW scheme useful only for testing // purposes. func NewTester(notify []string, noverify bool) *Ethash { return New(Config{PowMode: ModeTest}, notify, noverify) } // NewShared creates a full sized ethash PoW shared between all requesters running // in the same process. func NewShared() *Ethash { return &Ethash{shared: GetSharedEthash()} } // Close closes the exit channel to notify all backend threads exiting. func (ethash *Ethash) Close() error { ethash.closeOnce.Do(func() { // Short circuit if the exit channel is not allocated. if ethash.remote == nil { return } close(ethash.remote.requestExit) <-ethash.remote.exitCh }) return nil } // cache tries to retrieve a verification cache for the specified block number // by first checking against a list of in-memory caches, then against caches // stored on disk, and finally generating one if none can be found. func (ethash *Ethash) cache(block uint64) *cache { epoch := block / epochLength currentI, futureI := ethash.caches.get(epoch) current := currentI.(*cache) // Wait for generation finish. current.generate(doNotStoreCachesOnDisk, 0, ethash.config.CachesLockMmap, ethash.config.PowMode == ModeTest) // If we need a new future cache, now's a good time to regenerate it. if futureI != nil { future := futureI.(*cache) go future.generate(doNotStoreCachesOnDisk, 0, ethash.config.CachesLockMmap, ethash.config.PowMode == ModeTest) } return current } // dataset tries to retrieve a mining dataset for the specified block number // by first checking against a list of in-memory datasets, then against DAGs // stored on disk, and finally generating one if none can be found. // // If async is specified, not only the future but the current DAG is also // generates on a background thread. func (ethash *Ethash) dataset(block uint64, async bool) *dataset { // Retrieve the requested ethash dataset epoch := block / epochLength currentI, futureI := ethash.datasets.get(epoch) current := currentI.(*dataset) // If async is specified, generate everything in a background thread if async && !current.generated() { go func() { defer debug.LogPanic() current.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.DatasetsLockMmap, ethash.config.PowMode == ModeTest) if futureI != nil { future := futureI.(*dataset) future.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.DatasetsLockMmap, ethash.config.PowMode == ModeTest) } }() } else { // Either blocking generation was requested, or already done current.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.DatasetsLockMmap, ethash.config.PowMode == ModeTest) if futureI != nil { future := futureI.(*dataset) go future.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.DatasetsLockMmap, ethash.config.PowMode == ModeTest) } } return current } // Hashrate implements PoW, returning the measured rate of the search invocations // per second over the last minute. // Note the returned hashrate includes local hashrate, but also includes the total // hashrate of all remote miner. func (ethash *Ethash) Hashrate() float64 { // Short circuit if we are run the ethash in normal/test mode. if (ethash.config.PowMode != ModeNormal && ethash.config.PowMode != ModeTest) || ethash.remote == nil { return ethash.hashrate.Rate1() } var res = make(chan uint64, 1) select { case ethash.remote.fetchRateCh <- res: case <-ethash.remote.exitCh: // Return local hashrate only if ethash is stopped. return ethash.hashrate.Rate1() } // Gather total submitted hash rate of remote sealers. return ethash.hashrate.Rate1() + float64(<-res) } // APIs implements consensus.Engine, returning the user facing RPC APIs. func (ethash *Ethash) APIs(chain consensus.ChainHeaderReader) []rpc.API { // In order to ensure backward compatibility, we exposes ethash RPC APIs // to both eth and ethash namespaces. return []rpc.API{ { Namespace: "eth", Version: "1.0", Service: &API{ethash}, Public: true, }, { Namespace: "ethash", Version: "1.0", Service: &API{ethash}, Public: true, }, } } // SeedHash is the seed to use for generating a verification cache and the mining // dataset. func SeedHash(block uint64) []byte { return seedHash(block) }