// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package adapters import ( "context" "errors" "fmt" "math" "net" "sync" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/node" "github.com/ledgerwatch/turbo-geth/p2p" "github.com/ledgerwatch/turbo-geth/p2p/enode" "github.com/ledgerwatch/turbo-geth/p2p/simulations/pipes" "github.com/ledgerwatch/turbo-geth/rpc" "github.com/gorilla/websocket" ) // SimAdapter is a NodeAdapter which creates in-memory simulation nodes and // connects them using net.Pipe type SimAdapter struct { pipe func() (net.Conn, net.Conn, error) mtx sync.RWMutex nodes map[enode.ID]*SimNode services map[string]ServiceFunc } // NewSimAdapter creates a SimAdapter which is capable of running in-memory // simulation nodes running any of the given services (the services to run on a // particular node are passed to the NewNode function in the NodeConfig) // the adapter uses a net.Pipe for in-memory simulated network connections func NewSimAdapter(services map[string]ServiceFunc) *SimAdapter { return &SimAdapter{ pipe: pipes.NetPipe, nodes: make(map[enode.ID]*SimNode), services: services, } } func NewTCPAdapter(services map[string]ServiceFunc) *SimAdapter { return &SimAdapter{ pipe: pipes.TCPPipe, nodes: make(map[enode.ID]*SimNode), services: services, } } // Name returns the name of the adapter for logging purposes func (s *SimAdapter) Name() string { return "sim-adapter" } // NewNode returns a new SimNode using the given config func (s *SimAdapter) NewNode(config *NodeConfig) (Node, error) { s.mtx.Lock() defer s.mtx.Unlock() id := config.ID // verify that the node has a private key in the config if config.PrivateKey == nil { return nil, fmt.Errorf("node is missing private key: %s", id) } // check a node with the ID doesn't already exist if _, exists := s.nodes[id]; exists { return nil, fmt.Errorf("node already exists: %s", id) } // check the services are valid if len(config.Services) == 0 { return nil, errors.New("node must have at least one service") } for _, service := range config.Services { if _, exists := s.services[service]; !exists { return nil, fmt.Errorf("unknown node service %q", service) } } err := config.initDummyEnode() if err != nil { return nil, err } n, err := node.New(&node.Config{ P2P: p2p.Config{ PrivateKey: config.PrivateKey, MaxPeers: math.MaxInt32, NoDiscovery: true, Dialer: s, EnableMsgEvents: config.EnableMsgEvents, }, NoUSB: true, Logger: log.New("node.id", id.String()), }) if err != nil { return nil, err } simNode := &SimNode{ ID: id, config: config, node: n, adapter: s, running: make(map[string]node.Service), } s.nodes[id] = simNode return simNode, nil } // Dial implements the p2p.NodeDialer interface by connecting to the node using // an in-memory net.Pipe func (s *SimAdapter) Dial(ctx context.Context, dest *enode.Node) (conn net.Conn, err error) { node, ok := s.GetNode(dest.ID()) if !ok { return nil, fmt.Errorf("unknown node: %s", dest.ID()) } srv := node.Server() if srv == nil { return nil, fmt.Errorf("node not running: %s", dest.ID()) } // SimAdapter.pipe is net.Pipe (NewSimAdapter) pipe1, pipe2, err := s.pipe() if err != nil { return nil, err } // this is simulated 'listening' // asynchronously call the dialed destination node's p2p server // to set up connection on the 'listening' side go srv.SetupConn(pipe1, 0, nil) return pipe2, nil } // DialRPC implements the RPCDialer interface by creating an in-memory RPC // client of the given node func (s *SimAdapter) DialRPC(id enode.ID) (*rpc.Client, error) { node, ok := s.GetNode(id) if !ok { return nil, fmt.Errorf("unknown node: %s", id) } handler, err := node.node.RPCHandler() if err != nil { return nil, err } return rpc.DialInProc(handler), nil } // GetNode returns the node with the given ID if it exists func (s *SimAdapter) GetNode(id enode.ID) (*SimNode, bool) { s.mtx.RLock() defer s.mtx.RUnlock() node, ok := s.nodes[id] return node, ok } // SimNode is an in-memory simulation node which connects to other nodes using // net.Pipe (see SimAdapter.Dial), running devp2p protocols directly over that // pipe type SimNode struct { lock sync.RWMutex ID enode.ID config *NodeConfig adapter *SimAdapter node *node.Node running map[string]node.Service client *rpc.Client registerOnce sync.Once } // Close closes the underlaying node.Node to release // acquired resources. func (sn *SimNode) Close() error { return sn.node.Close() } // Addr returns the node's discovery address func (sn *SimNode) Addr() []byte { return []byte(sn.Node().String()) } // Node returns a node descriptor representing the SimNode func (sn *SimNode) Node() *enode.Node { return sn.config.Node() } // Client returns an rpc.Client which can be used to communicate with the // underlying services (it is set once the node has started) func (sn *SimNode) Client() (*rpc.Client, error) { sn.lock.RLock() defer sn.lock.RUnlock() if sn.client == nil { return nil, errors.New("node not started") } return sn.client, nil } // ServeRPC serves RPC requests over the given connection by creating an // in-memory client to the node's RPC server. func (sn *SimNode) ServeRPC(conn *websocket.Conn) error { handler, err := sn.node.RPCHandler() if err != nil { return err } codec := rpc.NewFuncCodec(conn, conn.WriteJSON, conn.ReadJSON) handler.ServeCodec(codec, 0) return nil } // Snapshots creates snapshots of the services by calling the // simulation_snapshot RPC method func (sn *SimNode) Snapshots() (map[string][]byte, error) { sn.lock.RLock() services := make(map[string]node.Service, len(sn.running)) for name, service := range sn.running { services[name] = service } sn.lock.RUnlock() if len(services) == 0 { return nil, errors.New("no running services") } snapshots := make(map[string][]byte) for name, service := range services { if s, ok := service.(interface { Snapshot() ([]byte, error) }); ok { snap, err := s.Snapshot() if err != nil { return nil, err } snapshots[name] = snap } } return snapshots, nil } // Start registers the services and starts the underlying devp2p node func (sn *SimNode) Start(snapshots map[string][]byte) error { newService := func(name string) func(ctx *node.ServiceContext) (node.Service, error) { return func(nodeCtx *node.ServiceContext) (node.Service, error) { ctx := &ServiceContext{ RPCDialer: sn.adapter, NodeContext: nodeCtx, Config: sn.config, } if snapshots != nil { ctx.Snapshot = snapshots[name] } serviceFunc := sn.adapter.services[name] service, err := serviceFunc(ctx) if err != nil { return nil, err } sn.running[name] = service return service, nil } } // ensure we only register the services once in the case of the node // being stopped and then started again var regErr error sn.registerOnce.Do(func() { for _, name := range sn.config.Services { if err := sn.node.Register(newService(name)); err != nil { regErr = err break } } }) if regErr != nil { return regErr } if err := sn.node.Start(); err != nil { return err } // create an in-process RPC client handler, err := sn.node.RPCHandler() if err != nil { return err } sn.lock.Lock() sn.client = rpc.DialInProc(handler) sn.lock.Unlock() return nil } // Stop closes the RPC client and stops the underlying devp2p node func (sn *SimNode) Stop() error { sn.lock.Lock() if sn.client != nil { sn.client.Close() sn.client = nil } sn.lock.Unlock() return sn.node.Stop() } // Service returns a running service by name func (sn *SimNode) Service(name string) node.Service { sn.lock.RLock() defer sn.lock.RUnlock() return sn.running[name] } // Services returns a copy of the underlying services func (sn *SimNode) Services() []node.Service { sn.lock.RLock() defer sn.lock.RUnlock() services := make([]node.Service, 0, len(sn.running)) for _, service := range sn.running { services = append(services, service) } return services } // ServiceMap returns a map by names of the underlying services func (sn *SimNode) ServiceMap() map[string]node.Service { sn.lock.RLock() defer sn.lock.RUnlock() services := make(map[string]node.Service, len(sn.running)) for name, service := range sn.running { services[name] = service } return services } // Server returns the underlying p2p.Server func (sn *SimNode) Server() *p2p.Server { return sn.node.Server() } // SubscribeEvents subscribes the given channel to peer events from the // underlying p2p.Server func (sn *SimNode) SubscribeEvents(ch chan *p2p.PeerEvent) event.Subscription { srv := sn.Server() if srv == nil { panic("node not running") } return srv.SubscribeEvents(ch) } // NodeInfo returns information about the node func (sn *SimNode) NodeInfo() *p2p.NodeInfo { server := sn.Server() if server == nil { return &p2p.NodeInfo{ ID: sn.ID.String(), Enode: sn.Node().String(), } } return server.NodeInfo() }