/* Copyright 2021 Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package types import ( "bytes" "encoding/binary" "errors" "fmt" "hash" "io" "math/bits" "sort" "github.com/holiman/uint256" "github.com/ledgerwatch/erigon-lib/common/length" "github.com/ledgerwatch/erigon-lib/common/u256" "github.com/ledgerwatch/erigon-lib/gointerfaces/types" "github.com/ledgerwatch/erigon-lib/rlp" "github.com/ledgerwatch/secp256k1" "golang.org/x/crypto/sha3" ) type TxParsseConfig struct { ChainID uint256.Int } // TxParseContext is object that is required to parse transactions and turn transaction payload into TxSlot objects // usage of TxContext helps avoid extra memory allocations type TxParseContext struct { Keccak1 hash.Hash Keccak2 hash.Hash ChainID, R, S, V uint256.Int // Signature values ChainIDMul uint256.Int DeriveChainID uint256.Int // pre-allocated variable to calculate Sub(&ctx.v, &ctx.chainIDMul) buf [65]byte // buffer needs to be enough for hashes (32 bytes) and for public key (65 bytes) Sighash [32]byte Sig [65]byte withSender bool chainIDRequired bool IsProtected bool validateRlp func([]byte) error cfg TxParsseConfig } func NewTxParseContext(chainID uint256.Int) *TxParseContext { if chainID.IsZero() { panic("wrong chainID") } ctx := &TxParseContext{ withSender: true, Keccak1: sha3.NewLegacyKeccak256(), Keccak2: sha3.NewLegacyKeccak256(), } // behave as of London enabled ctx.cfg.ChainID.Set(&chainID) ctx.ChainIDMul.Mul(&chainID, u256.N2) return ctx } // TxSlot contains information extracted from an Ethereum transaction, which is enough to manage it inside the transaction. // Also, it contains some auxillary information, like ephemeral fields, and indices within priority queues type TxSlot struct { //txId uint64 // Transaction id (distinct from transaction hash), used as a compact reference to a transaction accross data structures //senderId uint64 // Sender id (distinct from sender address), used as a compact referecne to to a sender accross data structures Nonce uint64 // Nonce of the transaction Tip uint256.Int // Maximum tip that transaction is giving to miner/block proposer FeeCap uint64 // Maximum fee that transaction burns and gives to the miner/block proposer Gas uint64 // Gas limit of the transaction Value uint256.Int // Value transferred by the transaction IDHash [32]byte // Transaction hash for the purposes of using it as a transaction Id SenderID uint64 // SenderID - require external mapping to it's address Traced bool // Whether transaction needs to be traced throughout transcation pool code and generate debug printing Creation bool // Set to true if "To" field of the transation is not set DataLen int // Length of transaction's data (for calculation of intrinsic gas) DataNonZeroLen int AlAddrCount int // Number of addresses in the access list AlStorCount int // Number of storage keys in the access list //bestIdx int // Index of the transaction in the best priority queue (of whatever pool it currently belongs to) //worstIdx int // Index of the transaction in the worst priority queue (of whatever pook it currently belongs to) //local bool // Whether transaction has been injected locally (and hence needs priority when mining or proposing a block) Rlp []byte // TxPool set it to nil after save it to db } const ( LegacyTxType int = 0 AccessListTxType int = 1 DynamicFeeTxType int = 2 StarknetTxType int = 3 ) var ErrParseTxn = fmt.Errorf("%w transaction", rlp.ErrParse) var ErrRejected = errors.New("rejected") var ErrAlreadyKnown = errors.New("already known") var ErrRlpTooBig = errors.New("txn rlp too big") func (ctx *TxParseContext) ValidateRLP(f func(txnRlp []byte) error) { ctx.validateRlp = f } func (ctx *TxParseContext) WithSender(v bool) { ctx.withSender = v } func (ctx *TxParseContext) ChainIDRequired() *TxParseContext { ctx.chainIDRequired = true return ctx } // ParseTransaction extracts all the information from the transactions's payload (RLP) necessary to build TxSlot // it also performs syntactic validation of the transactions func (ctx *TxParseContext) ParseTransaction(payload []byte, pos int, slot *TxSlot, sender []byte, hasEnvelope bool, validateHash func([]byte) error) (p int, err error) { if len(payload) == 0 { return 0, fmt.Errorf("%w: empty rlp", ErrParseTxn) } if ctx.withSender && len(sender) != 20 { return 0, fmt.Errorf("%w: expect sender buffer of len 20", ErrParseTxn) } // Compute transaction hash ctx.Keccak1.Reset() ctx.Keccak2.Reset() // Legacy transations have list Prefix, whereas EIP-2718 transactions have string Prefix // therefore we assign the first returned value of Prefix function (list) to legacy variable dataPos, dataLen, legacy, err := rlp.Prefix(payload, pos) if err != nil { return 0, fmt.Errorf("%w: size Prefix: %s", ErrParseTxn, err) } // This handles the transactions coming from other Erigon peers of older versions, which add 0x80 (empty) transactions into packets if dataLen == 0 { return 0, fmt.Errorf("%w: transaction must be either 1 list or 1 string", ErrParseTxn) } if dataLen == 1 && !legacy { if hasEnvelope { return 0, fmt.Errorf("%w: expected envelope in the payload, got %x", ErrParseTxn, payload[dataPos:dataPos+dataLen]) } } p = dataPos var txType int // If it is non-legacy transaction, the transaction type follows, and then the the list if !legacy { txType = int(payload[p]) if _, err = ctx.Keccak1.Write(payload[p : p+1]); err != nil { return 0, fmt.Errorf("%w: computing IdHash (hashing type Prefix): %s", ErrParseTxn, err) } if _, err = ctx.Keccak2.Write(payload[p : p+1]); err != nil { return 0, fmt.Errorf("%w: computing signHash (hashing type Prefix): %s", ErrParseTxn, err) } p++ if p >= len(payload) { return 0, fmt.Errorf("%w: unexpected end of payload after txType", ErrParseTxn) } dataPos, dataLen, err = rlp.List(payload, p) if err != nil { return 0, fmt.Errorf("%w: envelope Prefix: %s", ErrParseTxn, err) } // Hash the envelope, not the full payload if _, err = ctx.Keccak1.Write(payload[p : dataPos+dataLen]); err != nil { return 0, fmt.Errorf("%w: computing IdHash (hashing the envelope): %s", ErrParseTxn, err) } // For legacy transaction, the entire payload in expected to be in "rlp" field // whereas for non-legacy, only the content of the envelope (start with position p) slot.Rlp = payload[p-1 : dataPos+dataLen] p = dataPos } else { slot.Rlp = payload[pos : dataPos+dataLen] } if ctx.validateRlp != nil { if err := ctx.validateRlp(slot.Rlp); err != nil { return p, err } } // Remember where signing hash data begins (it will need to be wrapped in an RLP list) sigHashPos := p if !legacy { p, err = rlp.U256(payload, p, &ctx.ChainID) if err != nil { return 0, fmt.Errorf("%w: chainId len: %s", ErrParseTxn, err) } if ctx.ChainID.IsZero() { // zero indicates that the chain ID was not specified in the tx. if ctx.chainIDRequired { return 0, fmt.Errorf("%w: chainID is required", ErrParseTxn) } ctx.ChainID.Set(&ctx.cfg.ChainID) } if !ctx.ChainID.Eq(&ctx.cfg.ChainID) { return 0, fmt.Errorf("%w: %s, %d (expected %d)", ErrParseTxn, "invalid chainID", ctx.ChainID.Uint64(), ctx.cfg.ChainID.Uint64()) } } // Next follows the nonce, which we need to parse p, slot.Nonce, err = rlp.U64(payload, p) if err != nil { return 0, fmt.Errorf("%w: nonce: %s", ErrParseTxn, err) } // Next follows gas price or tip // Although consensus rules specify that tip can be up to 256 bit long, we narrow it to 64 bit p, err = rlp.U256(payload, p, &slot.Tip) if err != nil { return 0, fmt.Errorf("%w: tip: %s", ErrParseTxn, err) } // Next follows feeCap, but only for dynamic fee transactions, for legacy transaction, it is // equal to tip if txType < DynamicFeeTxType { slot.FeeCap = slot.Tip.Uint64() } else { // Although consensus rules specify that feeCap can be up to 256 bit long, we narrow it to 64 bit p, slot.FeeCap, err = rlp.U64(payload, p) if err != nil { return 0, fmt.Errorf("%w: feeCap: %s", ErrParseTxn, err) } } // Next follows gas p, slot.Gas, err = rlp.U64(payload, p) if err != nil { return 0, fmt.Errorf("%w: gas: %s", ErrParseTxn, err) } // Next follows the destrination address (if present) dataPos, dataLen, err = rlp.String(payload, p) if err != nil { return 0, fmt.Errorf("%w: to len: %s", ErrParseTxn, err) } if dataLen != 0 && dataLen != 20 { return 0, fmt.Errorf("%w: unexpected length of to field: %d", ErrParseTxn, dataLen) } // Only note if To field is empty or not slot.Creation = dataLen == 0 p = dataPos + dataLen // Next follows value p, err = rlp.U256(payload, p, &slot.Value) if err != nil { return 0, fmt.Errorf("%w: value: %s", ErrParseTxn, err) } // Next goes data, but we are only interesting in its length dataPos, dataLen, err = rlp.String(payload, p) if err != nil { return 0, fmt.Errorf("%w: data len: %s", ErrParseTxn, err) } slot.DataLen = dataLen // Zero and non-zero bytes are priced differently slot.DataNonZeroLen = 0 for _, byt := range payload[dataPos : dataPos+dataLen] { if byt != 0 { slot.DataNonZeroLen++ } } p = dataPos + dataLen // Next goes starknet tx salt, but we are only interesting in its length if txType == StarknetTxType { dataPos, dataLen, err = rlp.String(payload, p) if err != nil { return 0, fmt.Errorf("%w: data len: %s", ErrParseTxn, err) } p = dataPos + dataLen } // Next follows access list for non-legacy transactions, we are only interesting in number of addresses and storage keys if !legacy { dataPos, dataLen, err = rlp.List(payload, p) if err != nil { return 0, fmt.Errorf("%w: access list len: %s", ErrParseTxn, err) } tuplePos := dataPos var tupleLen int for tuplePos < dataPos+dataLen { tuplePos, tupleLen, err = rlp.List(payload, tuplePos) if err != nil { return 0, fmt.Errorf("%w: tuple len: %s", ErrParseTxn, err) } var addrPos int addrPos, err = rlp.StringOfLen(payload, tuplePos, 20) if err != nil { return 0, fmt.Errorf("%w: tuple addr len: %s", ErrParseTxn, err) } slot.AlAddrCount++ var storagePos, storageLen int storagePos, storageLen, err = rlp.List(payload, addrPos+20) if err != nil { return 0, fmt.Errorf("%w: storage key list len: %s", ErrParseTxn, err) } skeyPos := storagePos for skeyPos < storagePos+storageLen { skeyPos, err = rlp.StringOfLen(payload, skeyPos, 32) if err != nil { return 0, fmt.Errorf("%w: tuple storage key len: %s", ErrParseTxn, err) } slot.AlStorCount++ skeyPos += 32 } if skeyPos != storagePos+storageLen { return 0, fmt.Errorf("%w: extraneous space in the tuple after storage key list", ErrParseTxn) } tuplePos += tupleLen } if tuplePos != dataPos+dataLen { return 0, fmt.Errorf("%w: extraneous space in the access list after all tuples", ErrParseTxn) } p = dataPos + dataLen } // This is where the data for Sighash ends // Next follows V of the signature var vByte byte sigHashEnd := p sigHashLen := uint(sigHashEnd - sigHashPos) var chainIDBits, chainIDLen int if legacy { p, err = rlp.U256(payload, p, &ctx.V) if err != nil { return 0, fmt.Errorf("%w: V: %s", ErrParseTxn, err) } ctx.IsProtected = ctx.V.Eq(u256.N27) || ctx.V.Eq(u256.N28) // Compute chainId from V if ctx.IsProtected { // Do not add chain id and two extra zeros vByte = byte(ctx.V.Uint64() - 27) ctx.ChainID.Set(&ctx.cfg.ChainID) } else { ctx.ChainID.Sub(&ctx.V, u256.N35) ctx.ChainID.Rsh(&ctx.ChainID, 1) if !ctx.ChainID.Eq(&ctx.cfg.ChainID) { return 0, fmt.Errorf("%w: %s, %d (expected %d)", ErrParseTxn, "invalid chainID", ctx.ChainID.Uint64(), ctx.cfg.ChainID.Uint64()) } chainIDBits = ctx.ChainID.BitLen() if chainIDBits <= 7 { chainIDLen = 1 } else { chainIDLen = (chainIDBits + 7) / 8 // It is always < 56 bytes sigHashLen++ // For chainId len Prefix } sigHashLen += uint(chainIDLen) // For chainId sigHashLen += 2 // For two extra zeros ctx.DeriveChainID.Sub(&ctx.V, &ctx.ChainIDMul) vByte = byte(ctx.DeriveChainID.Sub(&ctx.DeriveChainID, u256.N8).Uint64() - 27) } } else { var v uint64 p, v, err = rlp.U64(payload, p) if err != nil { return 0, fmt.Errorf("%w: V: %s", ErrParseTxn, err) } if v > 1 { return 0, fmt.Errorf("%w: V is loo large: %d", ErrParseTxn, v) } vByte = byte(v) ctx.IsProtected = true } // Next follows R of the signature p, err = rlp.U256(payload, p, &ctx.R) if err != nil { return 0, fmt.Errorf("%w: R: %s", ErrParseTxn, err) } // New follows S of the signature p, err = rlp.U256(payload, p, &ctx.S) if err != nil { return 0, fmt.Errorf("%w: S: %s", ErrParseTxn, err) } // For legacy transactions, hash the full payload if legacy { if _, err = ctx.Keccak1.Write(payload[pos:p]); err != nil { return 0, fmt.Errorf("%w: computing IdHash: %s", ErrParseTxn, err) } } //ctx.keccak1.Sum(slot.IdHash[:0]) _, _ = ctx.Keccak1.(io.Reader).Read(slot.IDHash[:32]) if validateHash != nil { if err := validateHash(slot.IDHash[:32]); err != nil { return p, err } } if !ctx.withSender { return p, nil } // Computing sigHash (hash used to recover sender from the signature) // Write len Prefix to the Sighash if sigHashLen < 56 { ctx.buf[0] = byte(sigHashLen) + 192 if _, err := ctx.Keccak2.Write(ctx.buf[:1]); err != nil { return 0, fmt.Errorf("%w: computing signHash (hashing len Prefix): %s", ErrParseTxn, err) } } else { beLen := (bits.Len(sigHashLen) + 7) / 8 binary.BigEndian.PutUint64(ctx.buf[1:], uint64(sigHashLen)) ctx.buf[8-beLen] = byte(beLen) + 247 if _, err := ctx.Keccak2.Write(ctx.buf[8-beLen : 9]); err != nil { return 0, fmt.Errorf("%w: computing signHash (hashing len Prefix): %s", ErrParseTxn, err) } } if _, err = ctx.Keccak2.Write(payload[sigHashPos:sigHashEnd]); err != nil { return 0, fmt.Errorf("%w: computing signHash: %s", ErrParseTxn, err) } if legacy { if chainIDLen > 0 { if chainIDBits <= 7 { ctx.buf[0] = byte(ctx.ChainID.Uint64()) if _, err := ctx.Keccak2.Write(ctx.buf[:1]); err != nil { return 0, fmt.Errorf("%w: computing signHash (hashing legacy chainId): %s", ErrParseTxn, err) } } else { binary.BigEndian.PutUint64(ctx.buf[1:9], ctx.ChainID[3]) binary.BigEndian.PutUint64(ctx.buf[9:17], ctx.ChainID[2]) binary.BigEndian.PutUint64(ctx.buf[17:25], ctx.ChainID[1]) binary.BigEndian.PutUint64(ctx.buf[25:33], ctx.ChainID[0]) ctx.buf[32-chainIDLen] = 128 + byte(chainIDLen) if _, err = ctx.Keccak2.Write(ctx.buf[32-chainIDLen : 33]); err != nil { return 0, fmt.Errorf("%w: computing signHash (hashing legacy chainId): %s", ErrParseTxn, err) } } // Encode two zeros ctx.buf[0] = 128 ctx.buf[1] = 128 if _, err := ctx.Keccak2.Write(ctx.buf[:2]); err != nil { return 0, fmt.Errorf("%w: computing signHash (hashing zeros after legacy chainId): %s", ErrParseTxn, err) } } } // Squeeze Sighash _, _ = ctx.Keccak2.(io.Reader).Read(ctx.Sighash[:32]) //ctx.keccak2.Sum(ctx.Sighash[:0]) binary.BigEndian.PutUint64(ctx.Sig[0:8], ctx.R[3]) binary.BigEndian.PutUint64(ctx.Sig[8:16], ctx.R[2]) binary.BigEndian.PutUint64(ctx.Sig[16:24], ctx.R[1]) binary.BigEndian.PutUint64(ctx.Sig[24:32], ctx.R[0]) binary.BigEndian.PutUint64(ctx.Sig[32:40], ctx.S[3]) binary.BigEndian.PutUint64(ctx.Sig[40:48], ctx.S[2]) binary.BigEndian.PutUint64(ctx.Sig[48:56], ctx.S[1]) binary.BigEndian.PutUint64(ctx.Sig[56:64], ctx.S[0]) ctx.Sig[64] = vByte // recover sender if _, err = secp256k1.RecoverPubkeyWithContext(secp256k1.DefaultContext, ctx.Sighash[:], ctx.Sig[:], ctx.buf[:0]); err != nil { return 0, fmt.Errorf("%w: recovering sender from signature: %s", ErrParseTxn, err) } //apply keccak to the public key ctx.Keccak2.Reset() if _, err = ctx.Keccak2.Write(ctx.buf[1:65]); err != nil { return 0, fmt.Errorf("%w: computing sender from public key: %s", ErrParseTxn, err) } // squeeze the hash of the public key //ctx.keccak2.Sum(ctx.buf[:0]) _, _ = ctx.Keccak2.(io.Reader).Read(ctx.buf[:32]) //take last 20 bytes as address copy(sender, ctx.buf[12:32]) return p, nil } type PeerID *types.H512 type Hashes []byte // flatten list of 32-byte hashes func (h Hashes) At(i int) []byte { return h[i*length.Hash : (i+1)*length.Hash] } func (h Hashes) Len() int { return len(h) / length.Hash } func (h Hashes) Less(i, j int) bool { return bytes.Compare(h[i*length.Hash:(i+1)*length.Hash], h[j*length.Hash:(j+1)*length.Hash]) < 0 } func (h Hashes) Swap(i, j int) { ii := i * length.Hash jj := j * length.Hash for k := 0; k < length.Hash; k++ { h[ii], h[jj] = h[jj], h[ii] ii++ jj++ } } // DedupCopy sorts hashes, and creates deduplicated copy func (h Hashes) DedupCopy() Hashes { if len(h) == 0 { return h } sort.Sort(h) unique := 1 for i := length.Hash; i < len(h); i += length.Hash { if !bytes.Equal(h[i:i+length.Hash], h[i-length.Hash:i]) { unique++ } } c := make(Hashes, unique*length.Hash) copy(c[:], h[0:length.Hash]) dest := length.Hash for i := dest; i < len(h); i += length.Hash { if !bytes.Equal(h[i:i+length.Hash], h[i-length.Hash:i]) { if dest != i { copy(c[dest:dest+length.Hash], h[i:i+length.Hash]) } dest += length.Hash } } return c } type Addresses []byte // flatten list of 20-byte addresses func (h Addresses) At(i int) []byte { return h[i*length.Addr : (i+1)*length.Addr] } func (h Addresses) Len() int { return len(h) / length.Addr } type TxSlots struct { Txs []*TxSlot Senders Addresses IsLocal []bool } func (s TxSlots) Valid() error { if len(s.Txs) != len(s.IsLocal) { return fmt.Errorf("TxSlots: expect equal len of isLocal=%d and txs=%d", len(s.IsLocal), len(s.Txs)) } if len(s.Txs) != s.Senders.Len() { return fmt.Errorf("TxSlots: expect equal len of senders=%d and txs=%d", s.Senders.Len(), len(s.Txs)) } return nil } var zeroAddr = make([]byte, 20) // Resize internal arrays to len=targetSize, shrinks if need. It rely on `append` algorithm to realloc func (s *TxSlots) Resize(targetSize uint) { for uint(len(s.Txs)) < targetSize { s.Txs = append(s.Txs, nil) } for uint(s.Senders.Len()) < targetSize { s.Senders = append(s.Senders, addressesGrowth...) } for uint(len(s.IsLocal)) < targetSize { s.IsLocal = append(s.IsLocal, false) } //todo: set nil to overflow txs oldLen := uint(len(s.Txs)) s.Txs = s.Txs[:targetSize] for i := oldLen; i < targetSize; i++ { s.Txs[i] = nil } s.Senders = s.Senders[:length.Addr*targetSize] for i := oldLen; i < targetSize; i++ { copy(s.Senders.At(int(i)), zeroAddr) } s.IsLocal = s.IsLocal[:targetSize] for i := oldLen; i < targetSize; i++ { s.IsLocal[i] = false } } func (s *TxSlots) Append(slot *TxSlot, sender []byte, isLocal bool) { n := len(s.Txs) s.Resize(uint(len(s.Txs) + 1)) s.Txs[n] = slot s.IsLocal[n] = isLocal copy(s.Senders.At(n), sender) } type TxsRlp struct { Txs [][]byte Senders Addresses IsLocal []bool } // Resize internal arrays to len=targetSize, shrinks if need. It rely on `append` algorithm to realloc func (s *TxsRlp) Resize(targetSize uint) { for uint(len(s.Txs)) < targetSize { s.Txs = append(s.Txs, nil) } for uint(s.Senders.Len()) < targetSize { s.Senders = append(s.Senders, addressesGrowth...) } for uint(len(s.IsLocal)) < targetSize { s.IsLocal = append(s.IsLocal, false) } //todo: set nil to overflow txs s.Txs = s.Txs[:targetSize] s.Senders = s.Senders[:length.Addr*targetSize] s.IsLocal = s.IsLocal[:targetSize] } var addressesGrowth = make([]byte, length.Addr) func EncodeSenderLengthForStorage(nonce uint64, balance uint256.Int) uint { var structLength uint = 1 // 1 byte for fieldset if !balance.IsZero() { structLength += uint(balance.ByteLen()) + 1 } if nonce > 0 { structLength += uint((bits.Len64(nonce)+7)/8) + 1 } return structLength } func EncodeSender(nonce uint64, balance uint256.Int, buffer []byte) { var fieldSet = 0 // start with first bit set to 0 var pos = 1 if nonce > 0 { fieldSet = 1 nonceBytes := (bits.Len64(nonce) + 7) / 8 buffer[pos] = byte(nonceBytes) var nonce = nonce for i := nonceBytes; i > 0; i-- { buffer[pos+i] = byte(nonce) nonce >>= 8 } pos += nonceBytes + 1 } // Encoding balance if !balance.IsZero() { fieldSet |= 2 balanceBytes := balance.ByteLen() buffer[pos] = byte(balanceBytes) pos++ balance.WriteToSlice(buffer[pos : pos+balanceBytes]) pos += balanceBytes //nolint } buffer[0] = byte(fieldSet) } func DecodeSender(enc []byte) (nonce uint64, balance uint256.Int, err error) { if len(enc) == 0 { return } var fieldSet = enc[0] var pos = 1 if fieldSet&1 > 0 { decodeLength := int(enc[pos]) if len(enc) < pos+decodeLength+1 { return nonce, balance, fmt.Errorf( "malformed CBOR for Account.Nonce: %s, Length %d", enc[pos+1:], decodeLength) } nonce = bytesToUint64(enc[pos+1 : pos+decodeLength+1]) pos += decodeLength + 1 } if fieldSet&2 > 0 { decodeLength := int(enc[pos]) if len(enc) < pos+decodeLength+1 { return nonce, balance, fmt.Errorf( "malformed CBOR for Account.Nonce: %s, Length %d", enc[pos+1:], decodeLength) } (&balance).SetBytes(enc[pos+1 : pos+decodeLength+1]) } return } func bytesToUint64(buf []byte) (x uint64) { for i, b := range buf { x = x<<8 + uint64(b) if i == 7 { return } } return } //nolint func (tx *TxSlot) PrintDebug(prefix string) { fmt.Printf("%s: senderID=%d,nonce=%d,tip=%d,v=%d\n", prefix, tx.SenderID, tx.Nonce, tx.Tip, tx.Value.Uint64()) //fmt.Printf("%s: senderID=%d,nonce=%d,tip=%d,hash=%x\n", prefix, tx.senderID, tx.nonce, tx.tip, tx.IdHash) } // AccessList is an EIP-2930 access list. type AccessList []AccessTuple // AccessTuple is the element type of an access list. type AccessTuple struct { Address [20]byte `json:"address" gencodec:"required"` StorageKeys [][32]byte `json:"storageKeys" gencodec:"required"` } // StorageKeys returns the total number of storage keys in the access list. func (al AccessList) StorageKeys() int { sum := 0 for _, tuple := range al { sum += len(tuple.StorageKeys) } return sum }