import csv import struct import plotly.express as px import pandas as pd import lmdb import sys import chain import dbutils import common # apt install python3-snappy libgmp3-dev && pip3 install trinity lmdb pandas plotly cmd = sys.argv[1] chaindata = sys.argv[2] env = lmdb.open(chaindata, max_dbs=100, readonly=True, subdir=True, map_size=32 * 1024 * 1024 * 1024, create=False) analyticsEnv = lmdb.open("analytics", max_dbs=100, readonly=False, subdir=True, map_size=32 * 1024 * 1024 * 1024, create=True) env.reader_check() # clear stale reads def allBuckets(env): buckets = [] root = env.open_db(None, create=False) with env.begin(write=False) as txn: with txn.cursor(root) as curs: for i, (k, v) in enumerate(curs.iternext()): buckets.append(k.decode("utf-8")) return buckets if cmd == "stats": data = {"name": [], "size": []} for bucket in allBuckets(env): b = env.open_db(bucket.encode(), create=False) with env.begin(write=False) as txn: stat = txn.stat(b) size = stat['psize'] * (stat['branch_pages'] + stat['leaf_pages'] + stat['overflow_pages']) print("%s: %dMb %dM" % (bucket, size/1024/1024, stat['entries']/1000/1000)) # data["name"].append(bucket) # data["size"].append(stat['psize'] * (stat['branch_pages'] + stat['leaf_pages'] + stat['overflow_pages'])) # df = pd.DataFrame.from_dict(data) # fig = px.pie(df, values='size', names='name', title='Buckets size') # fig.show() elif cmd == "gas_limits": StartedWhenBlockNumber = chain.lastBlockNumber(env) b = env.open_db(dbutils.HeaderPrefix, create=False) mainHashes = analyticsEnv.open_db("gl_main_hashes".encode(), create=True) def collect_main_hashes(readTx, writeTx): with readTx.cursor(b) as curs: for i, (k, v) in enumerate(curs.iternext()): timestamp = common.bytesToUint64(k[:common.BlockNumberLength]) if timestamp > StartedWhenBlockNumber: break if not dbutils.isHeaderHashKey(k): continue mainHash = bytes(v) writeTx.put(mainHash, common.uint64ToBytes(0), mainHashes) def gas_limits(readTx, writeTx, file): blockNum = 0 with readTx.cursor(b) as curs: for i, (k, v) in enumerate(curs.iternext()): timestamp = common.bytesToUint64(k[:common.BlockNumberLength]) if timestamp > StartedWhenBlockNumber: break if not dbutils.isHeaderKey(k): continue val = writeTx.get(k[common.BlockNumberLength:], None, mainHashes) if val is None: continue header = chain.decode_block_header(v) file.writerow([blockNum, header.GasLimit]) blockNum += 1 with env.begin(write=False) as txn: with analyticsEnv.begin(write=True) as writeTx: with open('gas_limits.csv', 'w') as csvfile: collect_main_hashes(txn, writeTx) print("Preloaded: %d" % writeTx.stat(mainHashes)["entries"]) gas_limits(txn, writeTx, csv.writer(csvfile)) else: print("unknown command %s" % cmd)