// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package p2p import ( "bytes" "errors" "fmt" "io" "log" "sync/atomic" "time" "github.com/ledgerwatch/erigon/common/debug" "github.com/ledgerwatch/erigon/event" "github.com/ledgerwatch/erigon/p2p/enode" "github.com/ledgerwatch/erigon/rlp" ) // Msg defines the structure of a p2p message. // // Note that a Msg can only be sent once since the Payload reader is // consumed during sending. It is not possible to create a Msg and // send it any number of times. If you want to reuse an encoded // structure, encode the payload into a byte array and create a // separate Msg with a bytes.Reader as Payload for each send. type Msg struct { Code uint64 Size uint32 // Size of the raw payload Payload io.Reader ReceivedAt time.Time meterCap Cap // Protocol name and version for egress metering meterCode uint64 // Message within protocol for egress metering meterSize uint32 // Compressed message size for ingress metering } // Decode parses the RLP content of a message into // the given value, which must be a pointer. // // For the decoding rules, please see package rlp. func (msg Msg) Decode(val interface{}) error { s := rlp.NewStream(msg.Payload, uint64(msg.Size)) if err := s.Decode(val); err != nil { return newPeerError(errInvalidMsg, "(code %x) (size %d) %v", msg.Code, msg.Size, err) } return nil } func (msg Msg) String() string { return fmt.Sprintf("msg #%v (%v bytes)", msg.Code, msg.Size) } // Discard reads any remaining payload data into a black hole. func (msg Msg) Discard() { _, err := io.Copy(io.Discard, msg.Payload) if err != nil { log.Fatal(err) } } func (msg Msg) Time() time.Time { return msg.ReceivedAt } type MsgReader interface { ReadMsg() (Msg, error) } type MsgWriter interface { // WriteMsg sends a message. It will block until the message's // Payload has been consumed by the other end. // // Note that messages can be sent only once because their // payload reader is drained. WriteMsg(Msg) error } // MsgReadWriter provides reading and writing of encoded messages. // Implementations should ensure that ReadMsg and WriteMsg can be // called simultaneously from multiple goroutines. type MsgReadWriter interface { MsgReader MsgWriter } // Send writes an RLP-encoded message with the given code. // data should encode as an RLP list. func Send(w MsgWriter, msgcode uint64, data interface{}) error { size, r, err := rlp.EncodeToReader(data) if err != nil { return err } return w.WriteMsg(Msg{Code: msgcode, Size: uint32(size), Payload: r}) } // SendItems writes an RLP with the given code and data elements. // For a call such as: // // SendItems(w, code, e1, e2, e3) // // the message payload will be an RLP list containing the items: // // [e1, e2, e3] // func SendItems(w MsgWriter, msgcode uint64, elems ...interface{}) error { defer debug.LogPanic() return Send(w, msgcode, elems) } // eofSignal wraps a reader with eof signaling. the eof channel is // closed when the wrapped reader returns an error or when count bytes // have been read. type eofSignal struct { wrapped io.Reader count uint32 // number of bytes left eof chan<- struct{} } // note: when using eofSignal to detect whether a message payload // has been read, Read might not be called for zero sized messages. func (r *eofSignal) Read(buf []byte) (int, error) { if r.count == 0 { if r.eof != nil { r.eof <- struct{}{} r.eof = nil } return 0, io.EOF } max := len(buf) if int(r.count) < len(buf) { max = int(r.count) } n, err := r.wrapped.Read(buf[:max]) r.count -= uint32(n) if (err != nil || r.count == 0) && r.eof != nil { r.eof <- struct{}{} // tell Peer that msg has been consumed r.eof = nil } return n, err } // MsgPipe creates a message pipe. Reads on one end are matched // with writes on the other. The pipe is full-duplex, both ends // implement MsgReadWriter. func MsgPipe() (*MsgPipeRW, *MsgPipeRW) { var ( c1, c2 = make(chan Msg), make(chan Msg) closing = make(chan struct{}) closed = new(int32) rw1 = &MsgPipeRW{c1, c2, closing, closed} rw2 = &MsgPipeRW{c2, c1, closing, closed} ) return rw1, rw2 } // ErrPipeClosed is returned from pipe operations after the // pipe has been closed. var ErrPipeClosed = errors.New("p2p: read or write on closed message pipe") // MsgPipeRW is an endpoint of a MsgReadWriter pipe. type MsgPipeRW struct { w chan<- Msg r <-chan Msg closing chan struct{} closed *int32 } // WriteMsg sends a message on the pipe. // It blocks until the receiver has consumed the message payload. func (p *MsgPipeRW) WriteMsg(msg Msg) error { if atomic.LoadInt32(p.closed) == 0 { consumed := make(chan struct{}, 1) msg.Payload = &eofSignal{msg.Payload, msg.Size, consumed} select { case p.w <- msg: if msg.Size > 0 { // wait for payload read or discard select { case <-consumed: case <-p.closing: } } return nil case <-p.closing: } } return ErrPipeClosed } // ReadMsg returns a message sent on the other end of the pipe. func (p *MsgPipeRW) ReadMsg() (Msg, error) { if atomic.LoadInt32(p.closed) == 0 { select { case msg := <-p.r: return msg, nil case <-p.closing: } } return Msg{}, ErrPipeClosed } // Close unblocks any pending ReadMsg and WriteMsg calls on both ends // of the pipe. They will return ErrPipeClosed. Close also // interrupts any reads from a message payload. func (p *MsgPipeRW) Close() error { if atomic.AddInt32(p.closed, 1) != 1 { // someone else is already closing atomic.StoreInt32(p.closed, 1) // avoid overflow return nil } close(p.closing) return nil } // ExpectMsg reads a message from r and verifies that its // code and encoded RLP content match the provided values. // If content is nil, the payload is discarded and not verified. func ExpectMsg(r MsgReader, code uint64, content interface{}) error { msg, err := r.ReadMsg() if err != nil { return err } if msg.Code != code { return fmt.Errorf("message code mismatch: got %d, expected %d", msg.Code, code) } if content == nil { msg.Discard() return nil } contentEnc, err := rlp.EncodeToBytes(content) if err != nil { panic("content encode error: " + err.Error()) } if int(msg.Size) != len(contentEnc) { return fmt.Errorf("message size mismatch: got %d, want %d", msg.Size, len(contentEnc)) } actualContent, err := io.ReadAll(msg.Payload) if err != nil { return err } if !bytes.Equal(actualContent, contentEnc) { return fmt.Errorf("message payload mismatch:\ngot: %x\nwant: %x", actualContent, contentEnc) } return nil } // msgEventer wraps a MsgReadWriter and sends events whenever a message is sent // or received type msgEventer struct { MsgReadWriter feed *event.Feed peerID enode.ID Protocol string localAddress string remoteAddress string } // newMsgEventer returns a msgEventer which sends message events to the given // feed func newMsgEventer(rw MsgReadWriter, feed *event.Feed, peerID enode.ID, proto, remote, local string) *msgEventer { return &msgEventer{ MsgReadWriter: rw, feed: feed, peerID: peerID, Protocol: proto, remoteAddress: remote, localAddress: local, } } // ReadMsg reads a message from the underlying MsgReadWriter and emits a // "message received" event func (ev *msgEventer) ReadMsg() (Msg, error) { msg, err := ev.MsgReadWriter.ReadMsg() if err != nil { return msg, err } ev.feed.Send(&PeerEvent{ Type: PeerEventTypeMsgRecv, Peer: ev.peerID, Protocol: ev.Protocol, MsgCode: &msg.Code, MsgSize: &msg.Size, LocalAddress: ev.localAddress, RemoteAddress: ev.remoteAddress, }) return msg, nil } // WriteMsg writes a message to the underlying MsgReadWriter and emits a // "message sent" event func (ev *msgEventer) WriteMsg(msg Msg) error { err := ev.MsgReadWriter.WriteMsg(msg) if err != nil { return err } ev.feed.Send(&PeerEvent{ Type: PeerEventTypeMsgSend, Peer: ev.peerID, Protocol: ev.Protocol, MsgCode: &msg.Code, MsgSize: &msg.Size, LocalAddress: ev.localAddress, RemoteAddress: ev.remoteAddress, }) return nil } // Close closes the underlying MsgReadWriter if it implements the io.Closer // interface func (ev *msgEventer) Close() error { if v, ok := ev.MsgReadWriter.(io.Closer); ok { return v.Close() } return nil }