// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see .
// Visualisation of Merkle Patricia Tries.
package trie
import (
"bytes"
"fmt"
"io"
"math/big"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/erigon/visual"
)
// VisualOpts contains various configuration options fo the Visual function
// It has been introduced as a replacement for too many arguments with options
type VisualOpts struct {
Highlights [][]byte // Collection of keys, in the HEX encoding, that need to be highlighted with digits
IndexColors []string // Array of colors for representing digits as colored boxes
FontColors []string // Array of colors, the same length as indexColors, for the textual digits inside the coloured boxes
CutTerminals int // Specifies how many digits to cut from the terminal short node keys for a more convinient display
Values bool // Whether to display value nodes (as box with rounded corners)
CodeCompressed bool // Whether to turn the code from a large rectangle to a small square for a more convinient display
ValCompressed bool // Whether long values (over 10 characters) are shortened using ... in the middle
ValHex bool // Whether values should be displayed as hex numbers (otherwise they are displayed as just strings)
SameLevel bool // Whether the leaves (and hashes) need to be on the same horizontal level
}
// Visual creates visualisation of trie with highlighting
func Visual(t *Trie, w io.Writer, opts *VisualOpts) {
var leaves map[string]struct{}
if opts.Values {
leaves = make(map[string]struct{})
}
hashes := make(map[string]struct{})
visualNode(t.root, []byte{}, w, opts.Highlights, opts, leaves, hashes)
if opts.SameLevel {
fmt.Fprintf(w, "{rank = same;")
for leaf := range leaves {
fmt.Fprintf(w, "n_%x;", leaf)
}
fmt.Fprintf(w, `};
`)
fmt.Fprintf(w, "{rank = same;")
for hash := range hashes {
fmt.Fprintf(w, "n_%x;", hash)
}
fmt.Fprintf(w, `};
`)
}
}
func visualNode(nd node, hex []byte, w io.Writer, highlights [][]byte, opts *VisualOpts,
leaves map[string]struct{}, hashes map[string]struct{}) {
switch n := nd.(type) {
case nil:
case *shortNode:
var pLenMax int
for _, h := range highlights {
pLen := prefixLen(n.Key, h)
if pLen > pLenMax {
pLenMax = pLen
}
}
visual.Vertical(w, n.Key, pLenMax, fmt.Sprintf("n_%x", hex), opts.IndexColors, opts.FontColors, opts.CutTerminals)
if v, ok := n.Val.(valueNode); ok {
if leaves != nil {
leaves[string(hex)] = struct{}{}
/*
var valStr string
if opts.ValHex {
valStr = fmt.Sprintf("%x", []byte(v))
} else {
valStr = string(v)
}
if opts.ValCompressed && len(valStr) > 10 {
valStr = fmt.Sprintf("%x..%x", []byte(v)[:2], []byte(v)[len(v)-2:])
}
*/
valHex := keybytesToHex(v)
valHex = valHex[:len(valHex)-1]
visual.HexBox(w, fmt.Sprintf("e_%x", concat(hex, n.Key...)), valHex, 32, opts.ValCompressed, false)
fmt.Fprintf(w,
`n_%x -> e_%x;
`, hex, concat(hex, n.Key...))
}
} else if a, ok := n.Val.(*accountNode); ok {
balance := float64(big.NewInt(0).Div(a.Balance.ToBig(), big.NewInt(1000000000000000)).Uint64()) / 1000.0
visual.Circle(w, fmt.Sprintf("e_%x", concat(hex, n.Key...)), fmt.Sprintf("%d \u039E%.3f", a.Nonce, balance), true)
accountHex := concat(hex, n.Key...)
fmt.Fprintf(w,
`n_%x -> e_%x;
`, hex, accountHex)
if !a.IsEmptyCodeHash() {
if code := a.code; code != nil {
codeHex := keybytesToHex(code)
codeHex = codeHex[:len(codeHex)-1]
visual.HexBox(w, fmt.Sprintf("c_%x", accountHex), codeHex, 32, opts.CodeCompressed, false)
} else {
visual.Box(w, fmt.Sprintf("c_%x", accountHex), "codeHash")
}
fmt.Fprintf(w,
`e_%x -> c_%x;
`, accountHex, accountHex)
}
if !a.IsEmptyRoot() {
if a.storage != nil {
nKey := n.Key
if nKey[len(nKey)-1] == 16 {
nKey = nKey[:len(nKey)-1]
}
var newHighlights [][]byte
for _, h := range highlights {
if h != nil && bytes.HasPrefix(h, nKey) {
newHighlights = append(newHighlights, h[len(nKey):])
}
}
visualNode(a.storage, accountHex[:len(accountHex)-1], w, newHighlights, opts, leaves, hashes)
} else {
visual.Box(w, fmt.Sprintf("n_%x", accountHex[:len(accountHex)-1]), "storHash")
}
fmt.Fprintf(w,
`e_%x -> n_%x;
`, accountHex, accountHex[:len(accountHex)-1])
}
} else {
fmt.Fprintf(w,
`
n_%x -> n_%x;
`, hex, concat(hex, n.Key...))
var newHighlights [][]byte
for _, h := range highlights {
if h != nil && bytes.HasPrefix(h, n.Key) {
newHighlights = append(newHighlights, h[len(n.Key):])
}
}
visualNode(n.Val, concat(hex, n.Key...), w, newHighlights, opts, leaves, hashes)
}
case *duoNode:
i1, i2 := n.childrenIdx()
fmt.Fprintf(w,
`
n_%x [label=<
`, hex)
var hOn1, hOn2 bool
var highlights1, highlights2 [][]byte
for _, h := range highlights {
if len(h) > 0 && h[0] == i1 {
highlights1 = append(highlights1, h[1:])
hOn1 = true
}
if len(h) > 0 && h[0] == i2 {
highlights2 = append(highlights2, h[1:])
hOn2 = true
}
}
if hOn1 {
fmt.Fprintf(w,
`
%s |
`, opts.IndexColors[i1], i1, opts.FontColors[i1], indices[i1])
} else {
fmt.Fprintf(w,
`
|
`, opts.IndexColors[i1], i1)
}
if hOn2 {
fmt.Fprintf(w,
`
%s |
`, opts.IndexColors[i2], i2, opts.FontColors[i2], indices[i2])
} else {
fmt.Fprintf(w,
`
|
`, opts.IndexColors[i2], i2)
}
fmt.Fprintf(w,
`
>];
n_%x:h%d -> n_%x;
n_%x:h%d -> n_%x;
`, hex, i1, concat(hex, i1), hex, i2, concat(hex, i2))
visualNode(n.child1, concat(hex, i1), w, highlights1, opts, leaves, hashes)
visualNode(n.child2, concat(hex, i2), w, highlights2, opts, leaves, hashes)
case *fullNode:
fmt.Fprintf(w,
`
n_%x [label=<
`, hex)
hOn := make(map[byte]struct{})
for _, h := range highlights {
if len(h) > 0 {
hOn[h[0]] = struct{}{}
}
}
for i, child := range n.Children {
if child == nil {
continue
}
if _, ok := hOn[byte(i)]; ok {
fmt.Fprintf(w,
`
%s |
`, opts.IndexColors[i], i, opts.FontColors[i], indices[i])
} else {
fmt.Fprintf(w,
`
|
`, opts.IndexColors[i], i)
}
}
fmt.Fprintf(w,
`
>];
`)
for i, child := range n.Children {
if child == nil {
continue
}
fmt.Fprintf(w,
` n_%x:h%d -> n_%x;
`, hex, i, concat(hex, byte(i)))
}
for i, child := range n.Children {
if child == nil {
continue
}
var newHighlights [][]byte
for _, h := range highlights {
if len(h) > 0 && h[0] == byte(i) {
newHighlights = append(newHighlights, h[1:])
}
}
visualNode(child, concat(hex, byte(i)), w, newHighlights, opts, leaves, hashes)
}
case hashNode:
hashes[string(hex)] = struct{}{}
visual.Box(w, fmt.Sprintf("n_%x", hex), "hash")
}
}
// Fold modifies the trie by folding the given set of keys, making sure that they are inaccessible
// without resolution via DB
func (t *Trie) Fold(keys [][]byte) {
var hexes = make([][]byte, 0, len(keys))
for _, key := range keys {
hexes = append(hexes, keybytesToHex(key))
}
h := newHasher(false)
defer returnHasherToPool(h)
_, t.root = fold(t.root, hexes, h, true)
}
func fold(nd node, hexes [][]byte, h *hasher, isRoot bool) (bool, node) {
switch n := nd.(type) {
case *shortNode:
var newHexes [][]byte
for _, hex := range hexes {
if bytes.Equal(n.Key, hex) {
var hn libcommon.Hash
h.hash(n, isRoot, hn[:])
return true, hashNode{hash: hn[:]}
}
pLen := prefixLen(n.Key, hex)
if pLen > 0 {
newHexes = append(newHexes, hex[pLen:])
}
}
if len(newHexes) > 0 {
folded, nn := fold(n.Val, newHexes, h, false)
n.Val = nn
if folded {
var hn libcommon.Hash
h.hash(n, isRoot, hn[:])
return true, hashNode{hash: hn[:]}
}
return false, n
}
case *duoNode:
i1, i2 := n.childrenIdx()
var hexes1, hexes2 [][]byte
for _, h := range hexes {
if len(h) > 0 && h[0] == i1 {
hexes1 = append(hexes1, h[1:])
}
if len(h) > 0 && h[0] == i2 {
hexes2 = append(hexes2, h[1:])
}
}
var folded1, folded2 bool
var nn1, nn2 node
if len(hexes1) > 0 {
folded1, nn1 = fold(n.child1, hexes1, h, false)
n.child1 = nn1
}
if len(hexes2) > 0 {
folded2, nn2 = fold(n.child2, hexes2, h, false)
n.child2 = nn2
}
if folded1 && folded2 {
var hn libcommon.Hash
h.hash(n, isRoot, hn[:])
return true, hashNode{hash: hn[:]}
}
return false, n
case *fullNode:
var unfolded bool
for i, child := range n.Children {
if child == nil {
continue
}
var newHexes [][]byte
for _, h := range hexes {
if len(h) > 0 && h[0] == byte(i) {
newHexes = append(newHexes, h[1:])
}
}
if len(newHexes) > 0 {
folded, nn := fold(child, newHexes, h, false)
n.Children[i] = nn
if !folded {
unfolded = true
}
} else {
unfolded = true
}
}
if !unfolded {
var hn libcommon.Hash
h.hash(n, isRoot, hn[:])
return true, hashNode{hash: hn[:]}
}
return false, n
}
return false, nd
}
// HexToQuad converts hexary trie to quad trie with the same set of keys
func HexToQuad(t *Trie) *Trie {
newTrie := New(libcommon.Hash{})
transformSubTrie(t.root, []byte{}, newTrie, keyHexToQuad)
return newTrie
}
// KeyToQuad converts a key in KEY encoding to QUAD encoding (similar to HEX encoding, but uses digits 0..3 instead of digits 0..15)
func KeyToQuad(key []byte) []byte {
l := len(key)*2 + 1
var nibbles = make([]byte, l)
for i, b := range key {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
}
nibbles[l-1] = 16
return keyHexToQuad(nibbles)
}
func keyHexToQuad(hex []byte) []byte {
quadLen := len(hex) * 2
if hex[len(hex)-1] == 16 {
quadLen--
}
quad := make([]byte, quadLen)
qi := 0
for _, h := range hex {
if h == 16 {
quad[qi] = 16
qi++
} else {
quad[qi] = h / 4
qi++
quad[qi] = h % 4
qi++
}
}
return quad
}
// FullKeys construct the list of full keys (i.e. keys that can be accessed without resolution via DB) that are present in
// the given trie
func FullKeys(t *Trie) []string {
return fullKeys(t.root, nil, nil)
}
func fullKeys(nd node, hex []byte, fk []string) []string {
switch n := nd.(type) {
case nil:
return fk
case hashNode:
return fk
case valueNode:
return append(fk, string(concat(hex, 16)))
case *shortNode:
h := n.Key
// Remove terminator
if h[len(h)-1] == 16 {
h = h[:len(h)-1]
}
hexVal := concat(hex, h...)
return fullKeys(n.Val, hexVal, fk)
case *duoNode:
i1, i2 := n.childrenIdx()
hex1 := make([]byte, len(hex)+1)
copy(hex1, hex)
hex1[len(hex)] = i1
hex2 := make([]byte, len(hex)+1)
copy(hex2, hex)
hex2[len(hex)] = i2
return fullKeys(n.child2, hex2, fullKeys(n.child1, hex1, fk))
case *fullNode:
for i, child := range n.Children {
if child != nil {
fk = fullKeys(child, concat(hex, byte(i)), fk)
}
}
return fk
case *accountNode:
return append(fullKeys(n.storage, hex, fk), string(concat(hex, 16)))
default:
panic(fmt.Sprintf("%T", nd))
}
}