// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie // Experimental code for separating data and structural information // Each function corresponds to an opcode // DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure type structInfoReceiver interface { leaf(length int) error leafHash(length int) error accountLeaf(length int, fieldset uint32) error accountLeafHash(length int, fieldset uint32) error extension(key []byte) error extensionHash(key []byte) error branch(set uint16) error branchHash(set uint16) error hash(number int) error } // GenStructStep is one step of the algorithm that generates the structural information based on the sequence of keys. // `fieldSet` parameter specifies whether the generated leaf should be a binary string (fieldSet==0), or // an account (in that case the opcodes `ACCOUNTLEAF`/`ACCOUNTLEAFHASH` are emitted instead of `LEAF`/`LEAFHASH`). // `hashOnly` parameter is the function that, called for a certain prefix, determines whether the trie node for that prefix needs to be // compressed into just hash (if `true` is returned), or constructed (if `false` is returned). Usually the `hashOnly` function is // implemented in such a way to guarantee that certain keys are always accessible in the resulting trie (see ResolveSet.HashOnly function). // `isHashNode` parameter is set to true if `curr` key corresponds not to a leaf but to a hash node (which is "folded" respresentation // of a branch node). // `recursive` is set to true if the algorithm's step is invoked recursively, i.e. not after a freshly provided leaf or hash // `curr`, `succ` are two full keys or prefixes that are currently visible to the algorithm. By comparing these, the algorithm // makes decisions about the local structure, i.e. the presense of the prefix groups. // `e` parameter is the trie builder, which uses the structure information to assemble trie on the stack and compute its hash. // `groups` parameter is the map of the stack. each element of the `groups` slice is a bitmask, one bit per element currently on the stack. // Whenever a `BRANCH` or `BRANCHHASH` opcode is emitted, the set of digits is taken from the corresponding `groups` item, which is // then removed from the slice. This signifies the usage of the number of the stack items by the `BRANCH` or `BRANCHHASH` opcode. // DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure func GenStructStep( fieldSet uint32, hashOnly func(prefix []byte) bool, isHashOfNode bool, recursive bool, curr, succ []byte, e structInfoReceiver, groups []uint16, ) ([]uint16, error) { var precExists = len(groups) > 0 // Calculate the prefix of the smallest prefix group containing curr var precLen int if len(groups) > 0 { precLen = len(groups) - 1 } succLen := prefixLen(succ, curr) var maxLen int if precLen > succLen { maxLen = precLen } else { maxLen = succLen } //fmt.Printf("curr: %x, succ: %x, isHashOfNode: %t, maxLen %d, groups: %b, precLen: %d, succLen: %d\n", curr, succ, isHashOfNode, maxLen, groups, precLen, succLen) // Add the digit immediately following the max common prefix and compute length of remainder length extraDigit := curr[maxLen] for maxLen >= len(groups) { groups = append(groups, 0) } groups[maxLen] |= (uint16(1) << extraDigit) //fmt.Printf("groups is now %b\n", groups) remainderStart := maxLen if len(succ) > 0 || precExists { remainderStart++ } remainderLen := len(curr) - remainderStart if isHashOfNode { if err := e.hash(1); err != nil { return nil, err } if remainderLen > 0 { if hashOnly(curr[:maxLen]) { if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil { return nil, err } } else { if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil { return nil, err } } } } else { // Emit LEAF or EXTENSION based on the remainder if recursive { if remainderLen > 0 { if hashOnly(curr[:maxLen]) { if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil { return nil, err } } else { if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil { return nil, err } } } } else { if hashOnly(curr[:maxLen]) { if fieldSet == 0 { if err := e.leafHash(remainderLen); err != nil { return nil, err } } else { if err := e.accountLeafHash(remainderLen, fieldSet); err != nil { return nil, err } } } else { if fieldSet == 0 { if err := e.leaf(remainderLen); err != nil { return nil, err } } else { if err := e.accountLeaf(remainderLen, fieldSet); err != nil { return nil, err } } } } } // Check for the optional part if precLen <= succLen && len(succ) > 0 { return groups, nil } // Close the immediately encompassing prefix group, if needed if len(succ) > 0 || precExists { if hashOnly(curr[:maxLen]) { if err := e.branchHash(groups[maxLen]); err != nil { return nil, err } } else { if err := e.branch(groups[maxLen]); err != nil { return nil, err } } } groups = groups[:maxLen] // Check the end of recursion if precLen == 0 { return groups, nil } // Identify preceding key for the recursive invocation newCurr := curr[:precLen] for len(groups) > 0 && groups[len(groups)-1] == 0 { groups = groups[:len(groups)-1] } // Recursion return GenStructStep(fieldSet, hashOnly, false, true, newCurr, succ, e, groups) }