// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package backends import ( "context" "errors" "fmt" "math/big" "sync" "testing" "time" "github.com/holiman/uint256" "github.com/ledgerwatch/log/v3" "github.com/ledgerwatch/erigon-lib/chain" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon-lib/common/hexutility" "github.com/ledgerwatch/erigon-lib/kv" state2 "github.com/ledgerwatch/erigon-lib/state" types2 "github.com/ledgerwatch/erigon-lib/types" ethereum "github.com/ledgerwatch/erigon" "github.com/ledgerwatch/erigon/accounts/abi" "github.com/ledgerwatch/erigon/accounts/abi/bind" "github.com/ledgerwatch/erigon/common/math" "github.com/ledgerwatch/erigon/common/u256" "github.com/ledgerwatch/erigon/consensus" "github.com/ledgerwatch/erigon/consensus/ethash" "github.com/ledgerwatch/erigon/consensus/misc" "github.com/ledgerwatch/erigon/core" "github.com/ledgerwatch/erigon/core/rawdb" "github.com/ledgerwatch/erigon/core/state" "github.com/ledgerwatch/erigon/core/types" "github.com/ledgerwatch/erigon/core/vm" "github.com/ledgerwatch/erigon/event" "github.com/ledgerwatch/erigon/params" "github.com/ledgerwatch/erigon/turbo/services" "github.com/ledgerwatch/erigon/turbo/stages/mock" ) // This nil assignment ensures at compile time that SimulatedBackend implements bind.ContractBackend. var _ bind.ContractBackend = (*SimulatedBackend)(nil) var ( errBlockNumberUnsupported = errors.New("simulatedBackend cannot access blocks other than the latest block") errBlockDoesNotExist = errors.New("block does not exist in blockchain") errTransactionDoesNotExist = errors.New("transaction does not exist") ) // SimulatedBackend implements bind.ContractBackend, simulating a blockchain in // the background. Its main purpose is to allow for easy testing of contract bindings. // Simulated backend implements the following interfaces: // ChainReader, ChainStateReader, ContractBackend, ContractCaller, ContractFilterer, ContractTransactor, // DeployBackend, GasEstimator, GasPricer, LogFilterer, PendingContractCaller, TransactionReader, and TransactionSender type SimulatedBackend struct { m *mock.MockSentry getHeader func(hash libcommon.Hash, number uint64) *types.Header mu sync.Mutex prependBlock *types.Block pendingReceipts types.Receipts pendingHeader *types.Header gasPool *core.GasPool pendingBlock *types.Block // Currently pending block that will be imported on request pendingReader state.StateReader pendingReaderTx kv.Tx pendingState *state.IntraBlockState // Currently pending state that will be the active on request rmLogsFeed event.Feed chainFeed event.Feed logsFeed event.Feed } // NewSimulatedBackend creates a new binding backend using a simulated blockchain // for testing purposes. func NewSimulatedBackendWithConfig(alloc types.GenesisAlloc, config *chain.Config, gasLimit uint64) *SimulatedBackend { genesis := types.Genesis{Config: config, GasLimit: gasLimit, Alloc: alloc} engine := ethash.NewFaker() checkStateRoot := true m := mock.MockWithGenesisEngine(nil, &genesis, engine, false, checkStateRoot) backend := &SimulatedBackend{ m: m, prependBlock: m.Genesis, getHeader: func(hash libcommon.Hash, number uint64) (h *types.Header) { var err error if err = m.DB.View(context.Background(), func(tx kv.Tx) error { h, err = m.BlockReader.Header(context.Background(), tx, hash, number) return nil }); err != nil { panic(err) } return h }, } backend.emptyPendingBlock() return backend } // A simulated backend always uses chainID 1337. func NewSimulatedBackend(t *testing.T, alloc types.GenesisAlloc, gasLimit uint64) *SimulatedBackend { b := NewSimulatedBackendWithConfig(alloc, params.TestChainConfig, gasLimit) t.Cleanup(b.Close) return b } func NewTestSimulatedBackendWithConfig(t *testing.T, alloc types.GenesisAlloc, config *chain.Config, gasLimit uint64) *SimulatedBackend { b := NewSimulatedBackendWithConfig(alloc, config, gasLimit) t.Cleanup(b.Close) return b } func (b *SimulatedBackend) DB() kv.RwDB { return b.m.DB } func (b *SimulatedBackend) Agg() *state2.AggregatorV3 { return b.m.HistoryV3Components() } func (b *SimulatedBackend) HistoryV3() bool { return b.m.HistoryV3 } func (b *SimulatedBackend) Engine() consensus.Engine { return b.m.Engine } func (b *SimulatedBackend) BlockReader() services.FullBlockReader { return b.m.BlockReader } // Close terminates the underlying blockchain's update loop. func (b *SimulatedBackend) Close() { if b.pendingReaderTx != nil { b.pendingReaderTx.Rollback() } b.m.Close() } // Commit imports all the pending transactions as a single block and starts a // fresh new state. func (b *SimulatedBackend) Commit() { b.mu.Lock() defer b.mu.Unlock() if err := b.m.InsertChain(&core.ChainPack{ Headers: []*types.Header{b.pendingHeader}, Blocks: []*types.Block{b.pendingBlock}, TopBlock: b.pendingBlock, }); err != nil { panic(err) } //nolint:prealloc var allLogs []*types.Log for _, r := range b.pendingReceipts { allLogs = append(allLogs, r.Logs...) } b.logsFeed.Send(allLogs) b.prependBlock = b.pendingBlock b.emptyPendingBlock() } // Rollback aborts all pending transactions, reverting to the last committed state. func (b *SimulatedBackend) Rollback() { b.mu.Lock() defer b.mu.Unlock() b.emptyPendingBlock() } func (b *SimulatedBackend) emptyPendingBlock() { blockChain, _ := core.GenerateChain(b.m.ChainConfig, b.prependBlock, b.m.Engine, b.m.DB, 1, func(int, *core.BlockGen) {}) b.pendingBlock = blockChain.Blocks[0] b.pendingReceipts = blockChain.Receipts[0] b.pendingHeader = blockChain.Headers[0] b.gasPool = new(core.GasPool).AddGas(b.pendingHeader.GasLimit).AddBlobGas(b.m.ChainConfig.GetMaxBlobGasPerBlock()) if b.pendingReaderTx != nil { b.pendingReaderTx.Rollback() } tx, err := b.m.DB.BeginRo(context.Background()) //nolint:gocritic if err != nil { panic(err) } b.pendingReaderTx = tx b.pendingReader = b.m.NewStateReader(b.pendingReaderTx) b.pendingState = state.New(b.pendingReader) } // stateByBlockNumber retrieves a state by a given blocknumber. func (b *SimulatedBackend) stateByBlockNumber(db kv.Tx, blockNumber *big.Int) *state.IntraBlockState { if blockNumber == nil || blockNumber.Cmp(b.pendingBlock.Number()) == 0 { return state.New(b.m.NewHistoryStateReader(b.pendingBlock.NumberU64()+1, db)) } return state.New(b.m.NewHistoryStateReader(blockNumber.Uint64()+1, db)) } // CodeAt returns the code associated with a certain account in the blockchain. func (b *SimulatedBackend) CodeAt(ctx context.Context, contract libcommon.Address, blockNumber *big.Int) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() stateDB := b.stateByBlockNumber(tx, blockNumber) return stateDB.GetCode(contract), nil } // BalanceAt returns the wei balance of a certain account in the blockchain. func (b *SimulatedBackend) BalanceAt(ctx context.Context, contract libcommon.Address, blockNumber *big.Int) (*uint256.Int, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() stateDB := b.stateByBlockNumber(tx, blockNumber) return stateDB.GetBalance(contract), nil } // NonceAt returns the nonce of a certain account in the blockchain. func (b *SimulatedBackend) NonceAt(ctx context.Context, contract libcommon.Address, blockNumber *big.Int) (uint64, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return 0, err } defer tx.Rollback() stateDB := b.stateByBlockNumber(tx, blockNumber) return stateDB.GetNonce(contract), nil } // StorageAt returns the value of key in the storage of an account in the blockchain. func (b *SimulatedBackend) StorageAt(ctx context.Context, contract libcommon.Address, key libcommon.Hash, blockNumber *big.Int) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() stateDB := b.stateByBlockNumber(tx, blockNumber) var val uint256.Int stateDB.GetState(contract, &key, &val) return val.Bytes(), nil } // TransactionReceipt returns the receipt of a transaction. func (b *SimulatedBackend) TransactionReceipt(ctx context.Context, txHash libcommon.Hash) (*types.Receipt, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() // Retrieve the context of the receipt based on the transaction hash blockNumber, err := rawdb.ReadTxLookupEntry(tx, txHash) if err != nil { return nil, err } if blockNumber == nil { return nil, nil } block, err := b.BlockReader().BlockByNumber(b.m.Ctx, tx, *blockNumber) if err != nil { return nil, err } // Read all the receipts from the block and return the one with the matching hash receipts := rawdb.ReadReceipts(tx, block, nil) for _, receipt := range receipts { if receipt.TxHash == txHash { return receipt, nil } } return nil, nil } // TransactionByHash checks the pool of pending transactions in addition to the // blockchain. The isPending return value indicates whether the transaction has been // mined yet. Note that the transaction may not be part of the canonical chain even if // it's not pending. func (b *SimulatedBackend) TransactionByHash(ctx context.Context, txHash libcommon.Hash) (types.Transaction, bool, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(ctx) if err != nil { return nil, false, err } defer tx.Rollback() txn := b.pendingBlock.Transaction(txHash) if txn != nil { return txn, true, nil } blockNumber, ok, err := b.BlockReader().TxnLookup(ctx, tx, txHash) if err != nil { return nil, false, err } if !ok { return nil, false, ethereum.NotFound } blockHash, err := b.BlockReader().CanonicalHash(ctx, tx, blockNumber) if err != nil { return nil, false, err } body, err := b.BlockReader().BodyWithTransactions(ctx, tx, blockHash, blockNumber) if err != nil { return nil, false, err } if body == nil { return nil, false, ethereum.NotFound } for _, txn = range body.Transactions { if txn.Hash() == txHash { return txn, false, nil } } return nil, false, ethereum.NotFound } // BlockByHash retrieves a block based on the block hash. func (b *SimulatedBackend) BlockByHash(ctx context.Context, hash libcommon.Hash) (*types.Block, error) { b.mu.Lock() defer b.mu.Unlock() if hash == b.pendingBlock.Hash() { return b.pendingBlock, nil } tx, err := b.m.DB.BeginRo(ctx) if err != nil { return nil, err } defer tx.Rollback() block, err := b.BlockReader().BlockByHash(ctx, tx, hash) if err != nil { return nil, err } if block != nil { return block, nil } return nil, errBlockDoesNotExist } // BlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (b *SimulatedBackend) BlockByNumber(ctx context.Context, number *big.Int) (*types.Block, error) { b.mu.Lock() defer b.mu.Unlock() return b.blockByNumberNoLock(ctx, number) } // blockByNumberNoLock retrieves a block from the database by number, caching it // (associated with its hash) if found without Lock. func (b *SimulatedBackend) blockByNumberNoLock(ctx context.Context, number *big.Int) (*types.Block, error) { if number == nil || number.Cmp(b.prependBlock.Number()) == 0 { return b.prependBlock, nil } tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() block, err := b.BlockReader().BlockByNumber(ctx, tx, number.Uint64()) if err != nil { return nil, err } if block == nil { return nil, errBlockDoesNotExist } return block, nil } // HeaderByHash returns a block header from the current canonical chain. func (b *SimulatedBackend) HeaderByHash(ctx context.Context, hash libcommon.Hash) (*types.Header, error) { b.mu.Lock() defer b.mu.Unlock() if hash == b.pendingBlock.Hash() { return b.pendingBlock.Header(), nil } tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() number := rawdb.ReadHeaderNumber(tx, hash) if number == nil { return nil, errBlockDoesNotExist } header, err := b.BlockReader().Header(ctx, tx, hash, *number) if err != nil { return nil, err } if header == nil { return nil, errBlockDoesNotExist } return header, nil } // HeaderByNumber returns a block header from the current canonical chain. If number is // nil, the latest known header is returned. func (b *SimulatedBackend) HeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error) { b.mu.Lock() defer b.mu.Unlock() tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() if number == nil || number.Cmp(b.prependBlock.Number()) == 0 { return b.prependBlock.Header(), nil } header, err := b.BlockReader().HeaderByNumber(ctx, tx, number.Uint64()) if err != nil { return nil, err } return header, nil } // TransactionCount returns the number of transactions in a given block. func (b *SimulatedBackend) TransactionCount(ctx context.Context, blockHash libcommon.Hash) (uint, error) { b.mu.Lock() defer b.mu.Unlock() if blockHash == b.pendingBlock.Hash() { return uint(b.pendingBlock.Transactions().Len()), nil } tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return 0, err } defer tx.Rollback() blockNum := rawdb.ReadHeaderNumber(tx, blockHash) if blockNum == nil { return 0, nil } block, _, err := b.BlockReader().BlockWithSenders(ctx, tx, blockHash, *blockNum) if err != nil { return 0, err } if block == nil { return uint(0), errBlockDoesNotExist } return uint(block.Transactions().Len()), nil } // TransactionInBlock returns the transaction for a specific block at a specific index. func (b *SimulatedBackend) TransactionInBlock(ctx context.Context, blockHash libcommon.Hash, index uint) (types.Transaction, error) { b.mu.Lock() defer b.mu.Unlock() if blockHash == b.pendingBlock.Hash() { transactions := b.pendingBlock.Transactions() if uint(len(transactions)) < index+1 { return nil, errTransactionDoesNotExist } return transactions[index], nil } tx, err := b.m.DB.BeginRo(context.Background()) if err != nil { return nil, err } defer tx.Rollback() blockNum := rawdb.ReadHeaderNumber(tx, blockHash) if blockNum == nil { return nil, nil } block, _, err := b.BlockReader().BlockWithSenders(ctx, tx, blockHash, *blockNum) if err != nil { return nil, err } if block == nil { return nil, errBlockDoesNotExist } transactions := block.Transactions() if uint(len(transactions)) < index+1 { return nil, errTransactionDoesNotExist } return transactions[index], nil } // PendingCodeAt returns the code associated with an account in the pending state. func (b *SimulatedBackend) PendingCodeAt(ctx context.Context, contract libcommon.Address) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() return b.pendingState.GetCode(contract), nil } func newRevertError(result *core.ExecutionResult) *revertError { reason, errUnpack := abi.UnpackRevert(result.Revert()) err := errors.New("execution reverted") if errUnpack == nil { err = fmt.Errorf("execution reverted: %v", reason) } return &revertError{ error: err, reason: hexutility.Encode(result.Revert()), } } // revertError is an API error that encompasses an EVM revert with JSON error // code and a binary data blob. type revertError struct { error reason string // revert reason hex encoded } // ErrorCode returns the JSON error code for a revert. // See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal func (e *revertError) ErrorCode() int { return 3 } // ErrorData returns the hex encoded revert reason. func (e *revertError) ErrorData() interface{} { return e.reason } // CallContract executes a contract call. func (b *SimulatedBackend) CallContract(ctx context.Context, call ethereum.CallMsg, blockNumber *big.Int) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() if blockNumber != nil && blockNumber.Cmp(b.pendingBlock.Number()) != 0 { return nil, errBlockNumberUnsupported } var res *core.ExecutionResult if err := b.m.DB.View(context.Background(), func(tx kv.Tx) (err error) { s := state.New(b.m.NewStateReader(tx)) res, err = b.callContract(ctx, call, b.pendingBlock, s) if err != nil { return err } return nil }); err != nil { return nil, err } // If the result contains a revert reason, try to unpack and return it. if len(res.Revert()) > 0 { return nil, newRevertError(res) } return res.Return(), res.Err } // PendingCallContract executes a contract call on the pending state. func (b *SimulatedBackend) PendingCallContract(ctx context.Context, call ethereum.CallMsg) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() defer b.pendingState.RevertToSnapshot(b.pendingState.Snapshot()) res, err := b.callContract(ctx, call, b.pendingBlock, b.pendingState) if err != nil { return nil, err } // If the result contains a revert reason, try to unpack and return it. if len(res.Revert()) > 0 { return nil, newRevertError(res) } return res.Return(), res.Err } // PendingNonceAt implements PendingStateReader.PendingNonceAt, retrieving // the nonce currently pending for the account. func (b *SimulatedBackend) PendingNonceAt(ctx context.Context, account libcommon.Address) (uint64, error) { b.mu.Lock() defer b.mu.Unlock() return b.pendingState.GetNonce(account), nil } // SuggestGasPrice implements ContractTransactor.SuggestGasPrice. Since the simulated // chain doesn't have miners, we just return a gas price of 1 for any call. func (b *SimulatedBackend) SuggestGasPrice(ctx context.Context) (*big.Int, error) { return big.NewInt(1), nil } // EstimateGas executes the requested code against the currently pending block/state and // returns the used amount of gas. func (b *SimulatedBackend) EstimateGas(ctx context.Context, call ethereum.CallMsg) (uint64, error) { b.mu.Lock() defer b.mu.Unlock() // Determine the lowest and highest possible gas limits to binary search in between var ( lo = params.TxGas - 1 hi uint64 gasCap uint64 ) if call.Gas >= params.TxGas { hi = call.Gas } else { hi = b.pendingBlock.GasLimit() } // Recap the highest gas allowance with account's balance. if call.GasPrice != nil && !call.GasPrice.IsZero() { balance := b.pendingState.GetBalance(call.From) // from can't be nil available := balance.ToBig() if call.Value != nil { if call.Value.ToBig().Cmp(available) >= 0 { return 0, errors.New("insufficient funds for transfer") } available.Sub(available, call.Value.ToBig()) } allowance := new(big.Int).Div(available, call.GasPrice.ToBig()) if allowance.IsUint64() && hi > allowance.Uint64() { transfer := call.Value if transfer == nil { transfer = new(uint256.Int) } log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance, "sent", transfer, "gasprice", call.GasPrice, "fundable", allowance) hi = allowance.Uint64() } } gasCap = hi b.pendingState.SetTxContext(libcommon.Hash{}, libcommon.Hash{}, len(b.pendingBlock.Transactions())) // Create a helper to check if a gas allowance results in an executable transaction executable := func(gas uint64) (bool, *core.ExecutionResult, error) { call.Gas = gas snapshot := b.pendingState.Snapshot() res, err := b.callContract(ctx, call, b.pendingBlock, b.pendingState) b.pendingState.RevertToSnapshot(snapshot) if err != nil { if errors.Is(err, core.ErrIntrinsicGas) { return true, nil, nil // Special case, raise gas limit } return true, nil, err // Bail out } return res.Failed(), res, nil } // Execute the binary search and hone in on an executable gas limit for lo+1 < hi { mid := (hi + lo) / 2 failed, _, err := executable(mid) // If the error is not nil(consensus error), it means the provided message // call or transaction will never be accepted no matter how much gas it is // assigned. Return the error directly, don't struggle any more if err != nil { return 0, err } if failed { lo = mid } else { hi = mid } } // Reject the transaction as invalid if it still fails at the highest allowance if hi == gasCap { failed, result, err := executable(hi) if err != nil { return 0, err } if failed { if result != nil && result.Err != vm.ErrOutOfGas { if len(result.Revert()) > 0 { return 0, newRevertError(result) } return 0, result.Err } // Otherwise, the specified gas cap is too low return 0, fmt.Errorf("gas required exceeds allowance (%d)", gasCap) } } return hi, nil } // callContract implements common code between normal and pending contract calls. // state is modified during execution, make sure to copy it if necessary. func (b *SimulatedBackend) callContract(_ context.Context, call ethereum.CallMsg, block *types.Block, statedb *state.IntraBlockState) (*core.ExecutionResult, error) { const baseFeeUpperLimit = 880000000 // Ensure message is initialized properly. if call.GasPrice == nil { call.GasPrice = u256.Num1 } if call.FeeCap == nil { call.FeeCap = uint256.NewInt(baseFeeUpperLimit) } if call.Tip == nil { call.Tip = uint256.NewInt(baseFeeUpperLimit) } if call.Gas == 0 { call.Gas = 50000000 } if call.Value == nil { call.Value = new(uint256.Int) } // Set infinite balance to the fake caller account. from := statedb.GetOrNewStateObject(call.From) from.SetBalance(uint256.NewInt(0).SetAllOne()) // Execute the call. msg := callMsg{call} txContext := core.NewEVMTxContext(msg) header := block.Header() evmContext := core.NewEVMBlockContext(header, core.GetHashFn(header, b.getHeader), b.m.Engine, nil) // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmEnv := vm.NewEVM(evmContext, txContext, statedb, b.m.ChainConfig, vm.Config{}) gasPool := new(core.GasPool).AddGas(math.MaxUint64).AddBlobGas(math.MaxUint64) return core.NewStateTransition(vmEnv, msg, gasPool).TransitionDb(true /* refunds */, false /* gasBailout */) } // SendTransaction updates the pending block to include the given transaction. // It panics if the transaction is invalid. func (b *SimulatedBackend) SendTransaction(ctx context.Context, tx types.Transaction) error { b.mu.Lock() defer b.mu.Unlock() // Check transaction validity. signer := types.MakeSigner(b.m.ChainConfig, b.pendingBlock.NumberU64(), b.pendingBlock.Time()) sender, senderErr := tx.Sender(*signer) if senderErr != nil { return fmt.Errorf("invalid transaction: %w", senderErr) } nonce := b.pendingState.GetNonce(sender) if tx.GetNonce() != nonce { return fmt.Errorf("invalid transaction nonce: got %d, want %d", tx.GetNonce(), nonce) } b.pendingState.SetTxContext(tx.Hash(), libcommon.Hash{}, len(b.pendingBlock.Transactions())) //fmt.Printf("==== Start producing block %d, header: %d\n", b.pendingBlock.NumberU64(), b.pendingHeader.Number.Uint64()) if _, _, err := core.ApplyTransaction( b.m.ChainConfig, core.GetHashFn(b.pendingHeader, b.getHeader), b.m.Engine, &b.pendingHeader.Coinbase, b.gasPool, b.pendingState, state.NewNoopWriter(), b.pendingHeader, tx, &b.pendingHeader.GasUsed, b.pendingHeader.BlobGasUsed, vm.Config{}); err != nil { return err } //fmt.Printf("==== Start producing block %d\n", (b.prependBlock.NumberU64() + 1)) chain, err := core.GenerateChain(b.m.ChainConfig, b.prependBlock, b.m.Engine, b.m.DB, 1, func(number int, block *core.BlockGen) { for _, tx := range b.pendingBlock.Transactions() { block.AddTxWithChain(b.getHeader, b.m.Engine, tx) } block.AddTxWithChain(b.getHeader, b.m.Engine, tx) }) if err != nil { return err } //fmt.Printf("==== End producing block %d\n", b.pendingBlock.NumberU64()) b.pendingBlock = chain.Blocks[0] b.pendingReceipts = chain.Receipts[0] b.pendingHeader = chain.Headers[0] return nil } // FilterLogs executes a log filter operation, blocking during execution and // returning all the results in one batch. // // TODO(karalabe): Deprecate when the subscription one can return past data too. func (b *SimulatedBackend) FilterLogs(ctx context.Context, query ethereum.FilterQuery) ([]types.Log, error) { return nil, nil } // SubscribeFilterLogs creates a background log filtering operation, returning a // subscription immediately, which can be used to stream the found events. func (b *SimulatedBackend) SubscribeFilterLogs(ctx context.Context, query ethereum.FilterQuery, ch chan<- types.Log) (ethereum.Subscription, error) { return nil, nil } // SubscribeNewHead returns an event subscription for a new header. func (b *SimulatedBackend) SubscribeNewHead(ctx context.Context, ch chan<- *types.Header) (ethereum.Subscription, error) { return nil, nil } // AdjustTime adds a time shift to the simulated clock. // It can only be called on empty blocks. func (b *SimulatedBackend) AdjustTime(adjustment time.Duration) error { b.mu.Lock() defer b.mu.Unlock() if len(b.pendingBlock.Transactions()) != 0 { return errors.New("could not adjust time on non-empty block") } chain, err := core.GenerateChain(b.m.ChainConfig, b.prependBlock, b.m.Engine, b.m.DB, 1, func(number int, block *core.BlockGen) { for _, tx := range b.pendingBlock.Transactions() { block.AddTxWithChain(b.getHeader, b.m.Engine, tx) } block.OffsetTime(int64(adjustment.Seconds())) }) if err != nil { return err } b.pendingBlock = chain.Blocks[0] b.pendingHeader = chain.Headers[0] return nil } // callMsg implements core.Message to allow passing it as a transaction simulator. type callMsg struct { ethereum.CallMsg } func (m callMsg) From() libcommon.Address { return m.CallMsg.From } func (m callMsg) Nonce() uint64 { return 0 } func (m callMsg) CheckNonce() bool { return false } func (m callMsg) To() *libcommon.Address { return m.CallMsg.To } func (m callMsg) GasPrice() *uint256.Int { return m.CallMsg.GasPrice } func (m callMsg) FeeCap() *uint256.Int { return m.CallMsg.FeeCap } func (m callMsg) Tip() *uint256.Int { return m.CallMsg.Tip } func (m callMsg) Gas() uint64 { return m.CallMsg.Gas } func (m callMsg) Value() *uint256.Int { return m.CallMsg.Value } func (m callMsg) Data() []byte { return m.CallMsg.Data } func (m callMsg) AccessList() types2.AccessList { return m.CallMsg.AccessList } func (m callMsg) IsFree() bool { return false } func (m callMsg) BlobGas() uint64 { return misc.GetBlobGasUsed(len(m.CallMsg.BlobHashes)) } func (m callMsg) MaxFeePerBlobGas() *uint256.Int { return m.CallMsg.MaxFeePerBlobGas } func (m callMsg) BlobHashes() []libcommon.Hash { return m.CallMsg.BlobHashes }