// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "context" "fmt" "io/ioutil" "math" "math/big" "math/rand" "testing" "time" "github.com/stretchr/testify/assert" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/consensus/ethash" "github.com/ledgerwatch/turbo-geth/core" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/core/types/accounts" "github.com/ledgerwatch/turbo-geth/core/vm" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/eth/downloader" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/p2p" "github.com/ledgerwatch/turbo-geth/params" "github.com/ledgerwatch/turbo-geth/rlp" "github.com/ledgerwatch/turbo-geth/trie" ) // Tests that block headers can be retrieved from a remote chain based on user queries. func TestGetBlockHeaders63(t *testing.T) { testGetBlockHeaders(t, 63) } func TestGetBlockHeaders64(t *testing.T) { testGetBlockHeaders(t, 64) } func testGetBlockHeaders(t *testing.T, protocol int) { pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, downloader.MaxHashFetch+15, nil, nil) // Create a "random" unknown hash for testing var unknown common.Hash for i := range unknown { unknown[i] = byte(i) } // Create a batch of tests for various scenarios limit := uint64(downloader.MaxHeaderFetch) tests := []struct { query *getBlockHeadersData // The query to execute for header retrieval expect []common.Hash // The hashes of the block whose headers are expected }{ // A single random block should be retrievable by hash and number too { &getBlockHeadersData{Origin: hashOrNumber{Hash: pm.blockchain.GetBlockByNumber(limit / 2).Hash()}, Amount: 1}, []common.Hash{pm.blockchain.GetBlockByNumber(limit / 2).Hash()}, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Amount: 1}, []common.Hash{pm.blockchain.GetBlockByNumber(limit / 2).Hash()}, }, // Multiple headers should be retrievable in both directions { &getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Amount: 3}, []common.Hash{ pm.blockchain.GetBlockByNumber(limit / 2).Hash(), pm.blockchain.GetBlockByNumber(limit/2 + 1).Hash(), pm.blockchain.GetBlockByNumber(limit/2 + 2).Hash(), }, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Amount: 3, Reverse: true}, []common.Hash{ pm.blockchain.GetBlockByNumber(limit / 2).Hash(), pm.blockchain.GetBlockByNumber(limit/2 - 1).Hash(), pm.blockchain.GetBlockByNumber(limit/2 - 2).Hash(), }, }, // Multiple headers with skip lists should be retrievable { &getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Skip: 3, Amount: 3}, []common.Hash{ pm.blockchain.GetBlockByNumber(limit / 2).Hash(), pm.blockchain.GetBlockByNumber(limit/2 + 4).Hash(), pm.blockchain.GetBlockByNumber(limit/2 + 8).Hash(), }, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Skip: 3, Amount: 3, Reverse: true}, []common.Hash{ pm.blockchain.GetBlockByNumber(limit / 2).Hash(), pm.blockchain.GetBlockByNumber(limit/2 - 4).Hash(), pm.blockchain.GetBlockByNumber(limit/2 - 8).Hash(), }, }, // The chain endpoints should be retrievable { &getBlockHeadersData{Origin: hashOrNumber{Number: 0}, Amount: 1}, []common.Hash{pm.blockchain.GetBlockByNumber(0).Hash()}, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64()}, Amount: 1}, []common.Hash{pm.blockchain.CurrentBlock().Hash()}, }, // Ensure protocol limits are honored { &getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() - 1}, Amount: limit + 10, Reverse: true}, pm.blockchain.GetBlockHashesFromHash(pm.blockchain.CurrentBlock().Hash(), limit), }, // Check that requesting more than available is handled gracefully { &getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() - 4}, Skip: 3, Amount: 3}, []common.Hash{ pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64() - 4).Hash(), pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64()).Hash(), }, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: 4}, Skip: 3, Amount: 3, Reverse: true}, []common.Hash{ pm.blockchain.GetBlockByNumber(4).Hash(), pm.blockchain.GetBlockByNumber(0).Hash(), }, }, // Check that requesting more than available is handled gracefully, even if mid skip { &getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() - 4}, Skip: 2, Amount: 3}, []common.Hash{ pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64() - 4).Hash(), pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64() - 1).Hash(), }, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: 4}, Skip: 2, Amount: 3, Reverse: true}, []common.Hash{ pm.blockchain.GetBlockByNumber(4).Hash(), pm.blockchain.GetBlockByNumber(1).Hash(), }, }, // Check a corner case where requesting more can iterate past the endpoints { &getBlockHeadersData{Origin: hashOrNumber{Number: 2}, Amount: 5, Reverse: true}, []common.Hash{ pm.blockchain.GetBlockByNumber(2).Hash(), pm.blockchain.GetBlockByNumber(1).Hash(), pm.blockchain.GetBlockByNumber(0).Hash(), }, }, // Check a corner case where skipping overflow loops back into the chain start { &getBlockHeadersData{Origin: hashOrNumber{Hash: pm.blockchain.GetBlockByNumber(3).Hash()}, Amount: 2, Reverse: false, Skip: math.MaxUint64 - 1}, []common.Hash{ pm.blockchain.GetBlockByNumber(3).Hash(), }, }, // Check a corner case where skipping overflow loops back to the same header { &getBlockHeadersData{Origin: hashOrNumber{Hash: pm.blockchain.GetBlockByNumber(1).Hash()}, Amount: 2, Reverse: false, Skip: math.MaxUint64}, []common.Hash{ pm.blockchain.GetBlockByNumber(1).Hash(), }, }, // Check that non existing headers aren't returned { &getBlockHeadersData{Origin: hashOrNumber{Hash: unknown}, Amount: 1}, []common.Hash{}, }, { &getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() + 1}, Amount: 1}, []common.Hash{}, }, } // Run each of the tests and verify the results against the chain for i, tt := range tests { peer, _ := newTestPeer("peer", protocol, pm, true) defer peer.close() // Collect the headers to expect in the response headers := []*types.Header{} for _, hash := range tt.expect { headers = append(headers, pm.blockchain.GetBlockByHash(hash).Header()) } // Send the hash request and verify the response p2p.Send(peer.app, 0x03, tt.query) if err := p2p.ExpectMsg(peer.app, 0x04, headers); err != nil { t.Errorf("test %d: headers mismatch: %v", i, err) } // If the test used number origins, repeat with hashes as the too if tt.query.Origin.Hash == (common.Hash{}) { if origin := pm.blockchain.GetBlockByNumber(tt.query.Origin.Number); origin != nil { tt.query.Origin.Hash, tt.query.Origin.Number = origin.Hash(), 0 p2p.Send(peer.app, 0x03, tt.query) if err := p2p.ExpectMsg(peer.app, 0x04, headers); err != nil { t.Errorf("test %d: headers mismatch: %v", i, err) } } } } } // Tests that block contents can be retrieved from a remote chain based on their hashes. func TestGetBlockBodies63(t *testing.T) { testGetBlockBodies(t, 63) } func TestGetBlockBodies64(t *testing.T) { testGetBlockBodies(t, 64) } func testGetBlockBodies(t *testing.T, protocol int) { pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, downloader.MaxBlockFetch+15, nil, nil) // Create a batch of tests for various scenarios limit := downloader.MaxBlockFetch tests := []struct { random int // Number of blocks to fetch randomly from the chain explicit []common.Hash // Explicitly requested blocks available []bool // Availability of explicitly requested blocks expected int // Total number of existing blocks to expect }{ {1, nil, nil, 1}, // A single random block should be retrievable {10, nil, nil, 10}, // Multiple random blocks should be retrievable {limit, nil, nil, limit}, // The maximum possible blocks should be retrievable {limit + 1, nil, nil, limit}, // No more than the possible block count should be returned {0, []common.Hash{pm.blockchain.Genesis().Hash()}, []bool{true}, 1}, // The genesis block should be retrievable {0, []common.Hash{pm.blockchain.CurrentBlock().Hash()}, []bool{true}, 1}, // The chains head block should be retrievable {0, []common.Hash{{}}, []bool{false}, 0}, // A non existent block should not be returned // Existing and non-existing blocks interleaved should not cause problems {0, []common.Hash{ {}, pm.blockchain.GetBlockByNumber(1).Hash(), {}, pm.blockchain.GetBlockByNumber(10).Hash(), {}, pm.blockchain.GetBlockByNumber(100).Hash(), {}, }, []bool{false, true, false, true, false, true, false}, 3}, } // Run each of the tests and verify the results against the chain for i, tt := range tests { peer, _ := newTestPeer("peer", protocol, pm, true) defer peer.close() // Collect the hashes to request, and the response to expect hashes, seen := []common.Hash{}, make(map[int64]bool) bodies := []*blockBody{} for j := 0; j < tt.random; j++ { for { num := rand.Int63n(int64(pm.blockchain.CurrentBlock().NumberU64())) if !seen[num] { seen[num] = true block := pm.blockchain.GetBlockByNumber(uint64(num)) hashes = append(hashes, block.Hash()) if len(bodies) < tt.expected { bodies = append(bodies, &blockBody{Transactions: block.Transactions(), Uncles: block.Uncles()}) } break } } } for j, hash := range tt.explicit { hashes = append(hashes, hash) if tt.available[j] && len(bodies) < tt.expected { block := pm.blockchain.GetBlockByHash(hash) bodies = append(bodies, &blockBody{Transactions: block.Transactions(), Uncles: block.Uncles()}) } } // Send the hash request and verify the response p2p.Send(peer.app, 0x05, hashes) if err := p2p.ExpectMsg(peer.app, 0x06, bodies); err != nil { t.Errorf("test %d: bodies mismatch: %v", i, err) } } } // Tests that the node state database can be retrieved based on hashes. func TestGetNodeData63(t *testing.T) { testGetNodeData(t, 63) } func TestGetNodeData64(t *testing.T) { testGetNodeData(t, 64) } func testGetNodeData(t *testing.T, protocol int) { // Assemble the test environment pm, addr := setUpStorageContractA(t) peer, _ := newTestPeer("peer", protocol, pm, true) defer peer.close() state, err := pm.blockchain.GetTrieDbState() assert.NoError(t, err) account, err := state.ReadAccountData(addr) assert.NoError(t, err) node0Rlp, node1Rlp, branchRlp := storageNodesOfContractA(t, 2) assert.Equal(t, account.Root, crypto.Keccak256Hash(branchRlp)) // Fetch some nodes hashes := []common.Hash{ crypto.Keccak256Hash(node1Rlp), pm.blockchain.CurrentBlock().Root(), crypto.Keccak256Hash(branchRlp), account.CodeHash, crypto.Keccak256Hash(node0Rlp), } err = p2p.Send(peer.app, GetNodeDataMsg, hashes) assert.NoError(t, err) msg, err := peer.app.ReadMsg() if err != nil { t.Fatalf("failed to read node data response: %v", err) } if msg.Code != NodeDataMsg { t.Fatalf("response packet code mismatch: have %x, want %x", msg.Code, NodeDataMsg) } var data [][]byte if err := msg.Decode(&data); err != nil { t.Fatalf("failed to decode response node data: %v", err) } // Verify that we get the right nodes back if len(data) != len(hashes) { t.Fatalf("response size mismatch: have %x, want %x", len(data), len(hashes)) } for i := 0; i < len(hashes); i++ { assert.NotEmpty(t, data[i]) assert.Equal(t, hashes[i], crypto.Keccak256Hash(data[i])) } } // Tests that the transaction receipts can be retrieved based on hashes. func TestGetReceipt63(t *testing.T) { testGetReceipt(t, 63) } func TestGetReceipt64(t *testing.T) { testGetReceipt(t, 64) } func testGetReceipt(t *testing.T, protocol int) { // Define two accounts to simulate transactions with acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey) signer := types.HomesteadSigner{} // Create a chain generator with some simple transactions (blatantly stolen from @fjl/chain_markets_test) generator := func(i int, block *core.BlockGen) { switch i { case 0: // In block 1, the test bank sends account #1 some ether. tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey) block.AddTx(tx) case 1: // In block 2, the test bank sends some more ether to account #1. // acc1Addr passes it on to account #2. tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey) tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key) block.AddTx(tx1) block.AddTx(tx2) case 2: // Block 3 is empty but was mined by account #2. block.SetCoinbase(acc2Addr) block.SetExtra([]byte("yeehaw")) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := block.PrevBlock(1).Header() b2.Extra = []byte("foo") block.AddUncle(b2) b3 := block.PrevBlock(2).Header() b3.Extra = []byte("foo") block.AddUncle(b3) } } // Assemble the test environment pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, 4, generator, nil) peer, _ := newTestPeer("peer", protocol, pm, true) defer peer.close() // Collect the hashes to request, and the response to expect hashes, receipts := []common.Hash{}, []types.Receipts{} for i := uint64(0); i <= pm.blockchain.CurrentBlock().NumberU64(); i++ { block := pm.blockchain.GetBlockByNumber(i) hashes = append(hashes, block.Hash()) receipts = append(receipts, pm.blockchain.GetReceiptsByHash(block.Hash())) } // Send the hash request and verify the response p2p.Send(peer.app, 0x0f, hashes) if err := p2p.ExpectMsg(peer.app, 0x10, receipts); err != nil { t.Errorf("receipts mismatch: %v", err) } } // Tests that post eth protocol handshake, clients perform a mutual checkpoint // challenge to validate each other's chains. Hash mismatches, or missing ones // during a fast sync should lead to the peer getting dropped. func TestCheckpointChallenge(t *testing.T) { tests := []struct { syncmode downloader.SyncMode checkpoint bool timeout bool empty bool match bool drop bool }{ // If checkpointing is not enabled locally, don't challenge and don't drop {downloader.FullSync, false, false, false, false, false}, {downloader.FastSync, false, false, false, false, false}, // If checkpointing is enabled locally and remote response is empty, only drop during fast sync {downloader.FullSync, true, false, true, false, false}, {downloader.FastSync, true, false, true, false, true}, // Special case, fast sync, unsynced peer // If checkpointing is enabled locally and remote response mismatches, always drop {downloader.FullSync, true, false, false, false, true}, {downloader.FastSync, true, false, false, false, true}, // If checkpointing is enabled locally and remote response matches, never drop {downloader.FullSync, true, false, false, true, false}, {downloader.FastSync, true, false, false, true, false}, // If checkpointing is enabled locally and remote times out, always drop {downloader.FullSync, true, true, false, true, true}, {downloader.FastSync, true, true, false, true, true}, } for _, tt := range tests { t.Run(fmt.Sprintf("sync %v checkpoint %v timeout %v empty %v match %v", tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match), func(t *testing.T) { testCheckpointChallenge(t, tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match, tt.drop) }) } } func testCheckpointChallenge(t *testing.T, syncmode downloader.SyncMode, checkpoint bool, timeout bool, empty bool, match bool, drop bool) { // Reduce the checkpoint handshake challenge timeout defer func(old time.Duration) { syncChallengeTimeout = old }(syncChallengeTimeout) syncChallengeTimeout = 250 * time.Millisecond // Initialize a chain and generate a fake CHT if checkpointing is enabled var ( db = ethdb.NewMemDatabase() config = new(params.ChainConfig) ) (&core.Genesis{Config: config}).MustCommit(db) // Commit genesis block // If checkpointing is enabled, create and inject a fake CHT and the corresponding // chllenge response. var response *types.Header var cht *params.TrustedCheckpoint if checkpoint { index := uint64(rand.Intn(500)) number := (index+1)*params.CHTFrequency - 1 response = &types.Header{Number: big.NewInt(int64(number)), Extra: []byte("valid")} cht = ¶ms.TrustedCheckpoint{ SectionIndex: index, SectionHead: response.Hash(), } } // Create a checkpoint aware protocol manager blockchain, err := core.NewBlockChain(db, nil, config, ethash.NewFaker(), vm.Config{}, nil) if err != nil { t.Fatalf("failed to create new blockchain: %v", err) } pm, err := NewProtocolManager(config, cht, syncmode, DefaultConfig.NetworkID, new(event.TypeMux), &testTxPool{pool: make(map[common.Hash]*types.Transaction)}, ethash.NewFaker(), blockchain, db, nil) if err != nil { t.Fatalf("failed to start test protocol manager: %v", err) } pm.Start(1000) defer pm.Stop() // Connect a new peer and check that we receive the checkpoint challenge peer, _ := newTestPeer("peer", eth63, pm, true) defer peer.close() if checkpoint { challenge := &getBlockHeadersData{ Origin: hashOrNumber{Number: response.Number.Uint64()}, Amount: 1, Skip: 0, Reverse: false, } if err := p2p.ExpectMsg(peer.app, GetBlockHeadersMsg, challenge); err != nil { t.Fatalf("challenge mismatch: %v", err) } // Create a block to reply to the challenge if no timeout is simulated if !timeout { if empty { if err := p2p.Send(peer.app, BlockHeadersMsg, []*types.Header{}); err != nil { t.Fatalf("failed to answer challenge: %v", err) } } else if match { if err := p2p.Send(peer.app, BlockHeadersMsg, []*types.Header{response}); err != nil { t.Fatalf("failed to answer challenge: %v", err) } } else { if err := p2p.Send(peer.app, BlockHeadersMsg, []*types.Header{{Number: response.Number}}); err != nil { t.Fatalf("failed to answer challenge: %v", err) } } } } // Wait until the test timeout passes to ensure proper cleanup time.Sleep(syncChallengeTimeout + 100*time.Millisecond) // Verify that the remote peer is maintained or dropped if drop { if peers := pm.peers.Len(); peers != 0 { t.Fatalf("peer count mismatch: have %d, want %d", peers, 0) } } else { if peers := pm.peers.Len(); peers != 1 { t.Fatalf("peer count mismatch: have %d, want %d", peers, 1) } } } func TestBroadcastBlock(t *testing.T) { var tests = []struct { totalPeers int broadcastExpected int }{ {1, 1}, {2, 1}, {3, 1}, {4, 2}, {5, 2}, {9, 3}, {12, 3}, {16, 4}, {26, 5}, {100, 10}, } for _, test := range tests { testBroadcastBlock(t, test.totalPeers, test.broadcastExpected) } } func testBroadcastBlock(t *testing.T, totalPeers, broadcastExpected int) { var ( evmux = new(event.TypeMux) pow = ethash.NewFaker() db = ethdb.NewMemDatabase() config = ¶ms.ChainConfig{} gspec = &core.Genesis{Config: config} genesis = gspec.MustCommit(db) ) blockchain, err := core.NewBlockChain(db, nil, config, pow, vm.Config{}, nil) if err != nil { t.Fatalf("failed to create new blockchain: %v", err) } cht := ¶ms.TrustedCheckpoint{} pm, err := NewProtocolManager(config, cht, downloader.FullSync, DefaultConfig.NetworkID, evmux, &testTxPool{pool: make(map[common.Hash]*types.Transaction)}, pow, blockchain, db, nil) if err != nil { t.Fatalf("failed to start test protocol manager: %v", err) } pm.Start(1000) defer pm.Stop() var peers []*testPeer for i := 0; i < totalPeers; i++ { peer, _ := newTestPeer(fmt.Sprintf("peer %d", i), eth63, pm, true) defer peer.close() peers = append(peers, peer) } ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1)) chain, _ := core.GenerateChain(ctx, gspec.Config, genesis, ethash.NewFaker(), db, 1, func(i int, gen *core.BlockGen) {}) pm.BroadcastBlock(chain[0], true /*propagate*/) errCh := make(chan error, totalPeers) doneCh := make(chan struct{}, totalPeers) for _, peer := range peers { go func(p *testPeer) { if err := p2p.ExpectMsg(p.app, NewBlockMsg, &newBlockData{Block: chain[0], TD: big.NewInt(131136)}); err != nil { errCh <- err } else { doneCh <- struct{}{} } }(peer) } var received int for { select { case <-doneCh: received++ case <-time.After(100 * time.Millisecond): if received != broadcastExpected { t.Errorf("broadcast count mismatch: have %d, want %d", received, broadcastExpected) } return case err = <-errCh: t.Fatalf("broadcast failed: %v", err) } } } var frhsAmnt = big.NewInt(10000) var addrHash = make([]common.Hash, 5) func setUpDummyAccountsForFirehose(t *testing.T) (*ProtocolManager, *testFirehosePeer) { addr1 := common.HexToAddress("0x3b4fc1530da632624fa1e223a91d99dbb07c2d42") addr2 := common.HexToAddress("0xb574d96f69c1324e3b49e63f4cc899736dd52789") addr3 := common.HexToAddress("0xb11e2c7c5b96dbf120ec8af539d028311366af00") addr4 := common.HexToAddress("0x7d9eb619ce1033cc710d9f9806a2330f85875f22") addrHash[0] = crypto.Keccak256Hash(testBank.Bytes()) addrHash[1] = crypto.Keccak256Hash(addr1.Bytes()) addrHash[2] = crypto.Keccak256Hash(addr2.Bytes()) addrHash[3] = crypto.Keccak256Hash(addr3.Bytes()) addrHash[4] = crypto.Keccak256Hash(addr4.Bytes()) assert.Equal(t, addrHash[0], common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")) assert.Equal(t, addrHash[1], common.HexToHash("0x1155f85cf8c36b3bf84a89b2d453da3cc5c647ff815a8a809216c47f5ab507a9")) assert.Equal(t, addrHash[2], common.HexToHash("0xac8e03d3673a43257a69fcd3ff99a7a17b7d0e0a900c337d55dbd36567938776")) assert.Equal(t, addrHash[3], common.HexToHash("0x464b54760c96939ce60fb73b20987db21fce5a624d190f4e769c54a2ba8be49e")) assert.Equal(t, addrHash[4], common.HexToHash("0x44091c88eed629ecac3ad260ab22318b52148b7a4cc2ac7d8bdf746877b54c15")) signer := types.HomesteadSigner{} numBlocks := 5 generator := func(i int, block *core.BlockGen) { switch i { case 0: tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr1, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) case 1: tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr2, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) case 2: tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr3, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) case 3: tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr4, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) case 4: // top up account #3 tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr3, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) } } pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, numBlocks, generator, nil) peer, _ := newFirehoseTestPeer("peer", pm) return pm, peer } func TestFirehoseStateRanges(t *testing.T) { pm, peer := setUpDummyAccountsForFirehose(t) defer peer.close() block4 := pm.blockchain.GetBlockByNumber(4) var request getStateRangesOrNodes request.ID = 1 request.Block = block4.Hash() // All known account keys start with either 0, 1, 4, or a. // Warning: we assume that the key of miner's account doesn't start with 2 or 4. request.Prefixes = []trie.Keybytes{ {Data: common.FromHex("40"), Odd: true, Terminating: false}, {Data: common.FromHex("20"), Odd: true, Terminating: false}, } assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request)) account := accounts.NewAccount() account.Balance.Set(frhsAmnt) var reply1 stateRangesMsg reply1.ID = 1 reply1.Entries = []firehoseAccountRange{ {Status: OK, Leaves: []accountLeaf{{addrHash[4], &account}, {addrHash[3], &account}}}, {Status: OK, Leaves: []accountLeaf{}}, } if err := p2p.ExpectMsg(peer.app, StateRangesCode, reply1); err != nil { t.Errorf("unexpected StateRanges response: %v", err) } nonexistentBlock := common.HexToHash("4444444444444444444444444444444444444444444444444444444444444444") request.ID = 2 request.Block = nonexistentBlock assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request)) block0 := pm.blockchain.GetBlockByNumber(0) block1 := pm.blockchain.GetBlockByNumber(1) block2 := pm.blockchain.GetBlockByNumber(2) block3 := pm.blockchain.GetBlockByNumber(3) block5 := pm.blockchain.GetBlockByNumber(5) var reply2 stateRangesMsg reply2.ID = 2 reply2.Entries = []firehoseAccountRange{ {Status: NoData, Leaves: []accountLeaf{}}, {Status: NoData, Leaves: []accountLeaf{}}, } reply2.AvailableBlocks = []common.Hash{block5.Hash(), block4.Hash(), block3.Hash(), block2.Hash(), block1.Hash(), block0.Hash()} if err := p2p.ExpectMsg(peer.app, StateRangesCode, reply2); err != nil { t.Errorf("unexpected StateRanges response: %v", err) } } func TestFirehoseTooManyLeaves(t *testing.T) { signer := types.HomesteadSigner{} amount := big.NewInt(10) generator := func(i int, block *core.BlockGen) { var rndAddr common.Address // #nosec G404 rand.Read(rndAddr[:]) tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), rndAddr, amount, params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) } pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, MaxLeavesPerPrefix, generator, nil) peer, _ := newFirehoseTestPeer("peer", pm) defer peer.close() // ---------------------------------------------------- // BLOCK #1 var request getStateRangesOrNodes request.ID = 0 request.Block = pm.blockchain.GetBlockByNumber(1).Hash() request.Prefixes = []trie.Keybytes{ {Data: []byte{}, Odd: false, Terminating: false}, // empty prefix } assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request)) msg, err := peer.app.ReadMsg() assert.NoError(t, err) content, err := ioutil.ReadAll(msg.Payload) assert.NoError(t, err) var reply0 stateRangesMsg assert.NoError(t, rlp.DecodeBytes(content, &reply0)) assert.Equal(t, uint64(0), reply0.ID) assert.Equal(t, 1, len(reply0.Entries)) assert.Equal(t, OK, reply0.Entries[0].Status) // test bank account + miner's account + the first random account assert.Equal(t, 3, len(reply0.Entries[0].Leaves)) // ---------------------------------------------------- // BLOCK #MaxLeavesPerPrefix request.ID = 1 request.Block = pm.blockchain.CurrentBlock().Hash() assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request)) var reply1 stateRangesMsg reply1.ID = 1 reply1.Entries = []firehoseAccountRange{ {Status: TooManyLeaves, Leaves: []accountLeaf{}}, } err = p2p.ExpectMsg(peer.app, StateRangesCode, reply1) if err != nil { t.Errorf("unexpected StateRanges response: %v", err) } // ---------------------------------------------------- // BLOCK #(MaxLeavesPerPrefix-2) request.ID = 2 request.Block = pm.blockchain.GetBlockByNumber(MaxLeavesPerPrefix - 2).Hash() assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request)) msg, err = peer.app.ReadMsg() assert.NoError(t, err) content, err = ioutil.ReadAll(msg.Payload) assert.NoError(t, err) var reply2 stateRangesMsg assert.NoError(t, rlp.DecodeBytes(content, &reply2)) assert.Equal(t, uint64(2), reply2.ID) assert.Equal(t, 1, len(reply2.Entries)) assert.Equal(t, OK, reply2.Entries[0].Status) // mind the test bank and the miner accounts assert.Equal(t, MaxLeavesPerPrefix, len(reply2.Entries[0].Leaves)) // ---------------------------------------------------- // BLOCK #(MaxLeavesPerPrefix-1) request.ID = 3 request.Block = pm.blockchain.GetBlockByNumber(MaxLeavesPerPrefix - 1).Hash() assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request)) var reply3 stateRangesMsg reply3.ID = 3 reply3.Entries = []firehoseAccountRange{ {Status: TooManyLeaves, Leaves: []accountLeaf{}}, } err = p2p.ExpectMsg(peer.app, StateRangesCode, reply3) if err != nil { t.Errorf("unexpected StateRanges response: %v", err) } } // 2 storage items starting from different nibbles func setUpStorageContractA(t *testing.T) (*ProtocolManager, common.Address) { // This contract initially sets its 0th storage to 0x2a // and its 1st storage to 0x01c9. // When called, it updates the 0th storage to the input provided. code := common.FromHex("602a6000556101c960015560068060166000396000f3600035600055") // https://github.com/CoinCulture/evm-tools // 0 PUSH1 => 2a // 2 PUSH1 => 00 // 4 SSTORE // storage[0] = 0x2a // 5 PUSH2 => 01c9 // 8 PUSH1 => 01 // 10 SSTORE // storage[1] = 0x01c9 // 11 PUSH1 => 06 // deploy begin // 13 DUP1 // 14 PUSH1 => 16 // 16 PUSH1 => 00 // 18 CODECOPY // 19 PUSH1 => 00 // 21 RETURN // deploy end // 22 PUSH1 => 00 // contract code // 24 CALLDATALOAD // 25 PUSH1 => 00 // 27 SSTORE // storage[0] = input[0] input := common.HexToHash("15").Bytes() signer := types.HomesteadSigner{} var addr common.Address generator := func(i int, block *core.BlockGen) { switch i { case 0: nonce := block.TxNonce(testBank) // storage[0] = 0x2a, storage[1] = 0x01c9 tx, err := types.SignTx(types.NewContractCreation(nonce, new(big.Int), 2e5, nil, code), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) addr = crypto.CreateAddress(testBank, nonce) case 1: // storage[0] = 0x15 tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr, new(big.Int), 2e5, nil, input), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) } } pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, 2, generator, nil) return pm, addr } func storageNodesOfContractA(t *testing.T, blockNbr uint64) (node0Rlp, node1Rlp, branchRlp []byte) { hashOf0 := crypto.Keccak256(common.HexToHash("00").Bytes()) hashOf1 := crypto.Keccak256(common.HexToHash("01").Bytes()) // https://github.com/ethereum/wiki/wiki/Patricia-Tree path0Compact := common.CopyBytes(hashOf0) // override the 0st nibble with aux one for compact encoding path0Compact[0] &= 0x0f path0Compact[0] |= 0x30 path1Compact := common.CopyBytes(hashOf1) path1Compact[0] &= 0x0f path1Compact[0] |= 0x30 var val0 uint = 0x2a if blockNbr >= 2 { val0 = 0x15 } leafNode := make([][]byte, 2) leafNode[0] = path0Compact val0Rlp, err := rlp.EncodeToBytes(val0) assert.NoError(t, err) leafNode[1] = val0Rlp node0Rlp, err = rlp.EncodeToBytes(leafNode) assert.NoError(t, err) leafNode[0] = path1Compact val1Rlp, err := rlp.EncodeToBytes(uint(0x01c9)) assert.NoError(t, err) leafNode[1] = val1Rlp node1Rlp, err = rlp.EncodeToBytes(leafNode) assert.NoError(t, err) branchNode := make([][]byte, 17) assert.True(t, len(node0Rlp) >= 32) branchNode[0x2] = crypto.Keccak256(node0Rlp) assert.True(t, len(node1Rlp) >= 32) branchNode[0xb] = crypto.Keccak256(node1Rlp) branchRlp, err = rlp.EncodeToBytes(branchNode) assert.NoError(t, err) return node0Rlp, node1Rlp, branchRlp } // 2 storage items starting with the same nibble func setUpStorageContractB(t *testing.T) (*ProtocolManager, common.Address) { // This contract initially sets its 6th storage to 0x2a // and its 8st storage to 0x01c9. // When called, it updates the 8th storage to the input provided. code := common.FromHex("602a6006556101c960085560068060166000396000f3600035600855") // https://github.com/CoinCulture/evm-tools // 0 PUSH1 => 2a // 2 PUSH1 => 06 // 4 SSTORE // storage[6] = 0x2a // 5 PUSH2 => 01c9 // 8 PUSH1 => 08 // 10 SSTORE // storage[8] = 0x01c9 // 11 PUSH1 => 06 // deploy begin // 13 DUP1 // 14 PUSH1 => 16 // 16 PUSH1 => 00 // 18 CODECOPY // 19 PUSH1 => 00 // 21 RETURN // deploy end // 22 PUSH1 => 00 // 24 CALLDATALOAD // 25 PUSH1 => 08 // 27 SSTORE // storage[8] = input[0] input := common.HexToHash("15").Bytes() signer := types.HomesteadSigner{} var addr common.Address generator := func(i int, block *core.BlockGen) { switch i { case 0: nonce := block.TxNonce(testBank) // storage[6] = 0x2a, storage[8] = 0x01c9 tx, err := types.SignTx(types.NewContractCreation(nonce, new(big.Int), 2e5, nil, code), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) addr = crypto.CreateAddress(testBank, nonce) case 1: // storage[8] = 0x15 tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr, new(big.Int), 2e5, nil, input), signer, testBankKey) assert.NoError(t, err) block.AddTx(tx) } } pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, 2, generator, nil) return pm, addr } func TestFirehoseStorageRanges(t *testing.T) { pm, addr := setUpStorageContractA(t) peer, _ := newFirehoseTestPeer("peer", pm) defer peer.close() // Block 1 var storageReq getStorageRangesOrNodes storageReq.ID = 1 storageReq.Block = pm.blockchain.GetBlockByNumber(1).Hash() emptyPrefix := trie.Keybytes{Data: []byte{}, Odd: false, Terminating: false} storageReq.Requests = []storageReqForOneAccount{ {Account: addr.Bytes(), Prefixes: []trie.Keybytes{emptyPrefix}}, } assert.NoError(t, p2p.Send(peer.app, GetStorageRangesCode, storageReq)) hashOf0 := crypto.Keccak256Hash(common.HexToHash("00").Bytes()) hashOf1 := crypto.Keccak256Hash(common.HexToHash("01").Bytes()) var storageReply storageRangesMsg storageReply.ID = 1 storageReply.Entries = [][]storageRange{{ {Status: OK, Leaves: []storageLeaf{ {Key: hashOf0, Val: *(big.NewInt(0x2a))}, {Key: hashOf1, Val: *(big.NewInt(0x01c9))}, }}, }} err := p2p.ExpectMsg(peer.app, StorageRangesCode, storageReply) if err != nil { t.Fatalf("unexpected StorageRanges response: %v", err) } // Block 2 storageReq.ID = 2 storageReq.Block = pm.blockchain.GetBlockByNumber(2).Hash() assert.NoError(t, p2p.Send(peer.app, GetStorageRangesCode, storageReq)) storageReply.ID = 2 storageReply.Entries[0][0].Leaves[0].Val.SetUint64(0x15) err = p2p.ExpectMsg(peer.app, StorageRangesCode, storageReply) if err != nil { t.Errorf("unexpected StorageRanges response: %v", err) } // TODO [Andrew] test contract w/o any storage } // TestFirehoseStorageNodesA tests a trie with a branch node at the root and 2 leaf nodes. func TestFirehoseStorageNodesA(t *testing.T) { pm, addr := setUpStorageContractA(t) peer, _ := newFirehoseTestPeer("peer", pm) defer peer.close() hashOf0 := crypto.Keccak256(common.HexToHash("00").Bytes()) hashOf1 := crypto.Keccak256(common.HexToHash("01").Bytes()) assert.Equal(t, hashOf0[0], byte(0x29)) assert.Equal(t, hashOf1[0], byte(0xb1)) var blockNbr uint64 = 1 var storageReq getStorageRangesOrNodes storageReq.ID = 1 storageReq.Block = pm.blockchain.GetBlockByNumber(blockNbr).Hash() emptyPrefix := trie.Keybytes{Data: []byte{}, Odd: false, Terminating: false} storageReq.Requests = []storageReqForOneAccount{ {Account: addr.Bytes(), Prefixes: []trie.Keybytes{emptyPrefix}}, } assert.NoError(t, p2p.Send(peer.app, GetStorageNodesCode, storageReq)) _, _, branchRlp := storageNodesOfContractA(t, blockNbr) var storageReply storageNodesMsg storageReply.ID = 1 storageReply.Nodes = make([][][]byte, 1) storageReply.Nodes[0] = make([][]byte, 1) storageReply.Nodes[0][0] = branchRlp if err := p2p.ExpectMsg(peer.app, StorageNodesCode, storageReply); err != nil { t.Errorf("unexpected StorageNodes response: %v", err) } } // TestFirehoseStorageNodesB tests a trie with an extension node at the root, // 1 intermediate branch node, and 2 leaf nodes. func TestFirehoseStorageNodesB(t *testing.T) { pm, addr := setUpStorageContractB(t) peer, _ := newFirehoseTestPeer("peer", pm) defer peer.close() hashOf6 := crypto.Keccak256(common.HexToHash("06").Bytes()) hashOf8 := crypto.Keccak256(common.HexToHash("08").Bytes()) assert.Equal(t, hashOf6[0], byte(0xf6)) assert.Equal(t, hashOf8[0], byte(0xf3)) var storageReq getStorageRangesOrNodes storageReq.ID = 1 storageReq.Block = pm.blockchain.GetBlockByNumber(1).Hash() emptyPrefix := trie.Keybytes{Data: []byte{}, Odd: false, Terminating: false} nibblePrefix := trie.Keybytes{Data: common.FromHex("f0"), Odd: true, Terminating: false} storageReq.Requests = []storageReqForOneAccount{ {Account: addr.Bytes(), Prefixes: []trie.Keybytes{emptyPrefix, nibblePrefix}}, } assert.NoError(t, p2p.Send(peer.app, GetStorageNodesCode, storageReq)) // https://github.com/ethereum/wiki/wiki/Patricia-Tree path6Compact := common.CopyBytes(hashOf6) // replace the first 2 nibbles with compact encoding stuff path6Compact[0] = 0x20 path8Compact := common.CopyBytes(hashOf8) path8Compact[0] = 0x20 leafNode := make([][]byte, 2) leafNode[0] = path6Compact val6Rlp, err := rlp.EncodeToBytes(uint(0x2a)) assert.NoError(t, err) leafNode[1] = val6Rlp node6Rlp, err := rlp.EncodeToBytes(leafNode) assert.NoError(t, err) leafNode[0] = path8Compact val8Rlp, err := rlp.EncodeToBytes(uint(0x01c9)) assert.NoError(t, err) leafNode[1] = val8Rlp node8Rlp, err := rlp.EncodeToBytes(leafNode) assert.NoError(t, err) branchNode := make([][]byte, 17) assert.True(t, len(node6Rlp) >= 32) branchNode[6] = crypto.Keccak256(node6Rlp) assert.True(t, len(node8Rlp) >= 32) branchNode[3] = crypto.Keccak256(node8Rlp) branchRlp, err := rlp.EncodeToBytes(branchNode) assert.NoError(t, err) extensionNode := make([][]byte, 2) extensionNode[0] = common.FromHex("1f") assert.True(t, len(branchRlp) >= 32) extensionNode[1] = crypto.Keccak256(branchRlp) extensionRlp, err := rlp.EncodeToBytes(extensionNode) assert.NoError(t, err) var storageReply storageNodesMsg storageReply.ID = 1 storageReply.Nodes = make([][][]byte, 1) storageReply.Nodes[0] = make([][]byte, 2) storageReply.Nodes[0][0] = extensionRlp storageReply.Nodes[0][1] = branchRlp err = p2p.ExpectMsg(peer.app, StorageNodesCode, storageReply) if err != nil { t.Errorf("unexpected StorageNodes response: %v", err) } } func TestFirehoseStateNodes(t *testing.T) { pm, peer := setUpDummyAccountsForFirehose(t) defer peer.close() // ------------------------------------------------------------------ // Firstly test the latest state where account3 has double the amount // ------------------------------------------------------------------ var request getStateRangesOrNodes request.ID = 0 request.Block = pm.blockchain.GetBlockByNumber(5).Hash() // All known account keys start with either 0, 1, 4, or a. // Warning: we assume that the key of miner's account doesn't start with 2 or 4. prefixA := trie.Keybytes{Data: common.FromHex("40"), Odd: true} prefixB := trie.Keybytes{Data: common.FromHex("20"), Odd: true} request.Prefixes = []trie.Keybytes{prefixA, prefixB} assert.NoError(t, p2p.Send(peer.app, GetStateNodesCode, request)) account3 := accounts.NewAccount() account3.Balance.Add(frhsAmnt, frhsAmnt) account3rlp, err := rlp.EncodeToBytes(&account3) assert.NoError(t, err) account4 := accounts.NewAccount() account4.Balance.Set(frhsAmnt) account4rlp, err := rlp.EncodeToBytes(&account4) assert.NoError(t, err) assert.Equal(t, addrHash[3], common.HexToHash("0x464b54760c96939ce60fb73b20987db21fce5a624d190f4e769c54a2ba8be49e")) assert.Equal(t, addrHash[4], common.HexToHash("0x44091c88eed629ecac3ad260ab22318b52148b7a4cc2ac7d8bdf746877b54c15")) // https://github.com/ethereum/wiki/wiki/Patricia-Tree addr3Node := make([][]byte, 2) prefix3rlp := make([]byte, common.HashLength) copy(prefix3rlp, addrHash[3].Bytes()) prefix3rlp[0] = 0x20 // we don't need the first 2 nibbles of the hash in the encoded path addr3Node[0] = prefix3rlp addr3Node[1] = account3rlp node3rlp, err := rlp.EncodeToBytes(addr3Node) assert.NoError(t, err) addr4Node := make([][]byte, 2) prefix4rlp := make([]byte, common.HashLength) copy(prefix4rlp, addrHash[4].Bytes()) prefix4rlp[0] = 0x20 // we don't need the first 2 nibbles of the hash in the encoded path addr4Node[0] = prefix4rlp addr4Node[1] = account4rlp node4rlp, err := rlp.EncodeToBytes(addr4Node) assert.NoError(t, err) branchNode := make([][]byte, 17) branchNode[6] = crypto.Keccak256(node3rlp) branchNode[4] = crypto.Keccak256(node4rlp) rlpA, err := rlp.EncodeToBytes(branchNode) assert.NoError(t, err) var reply stateNodesMsg reply.ID = 0 reply.Nodes = [][]byte{rlpA, nil} err = p2p.ExpectMsg(peer.app, StateNodesCode, reply) if err != nil { t.Errorf("unexpected StateNodes response: %v", err) } // ------------------------------------------------------------------- // Secondly test the previous state where account3 has once the amount // ------------------------------------------------------------------- request.ID = 1 request.Block = pm.blockchain.GetBlockByNumber(4).Hash() assert.NoError(t, p2p.Send(peer.app, GetStateNodesCode, request)) account3.Balance.Set(frhsAmnt) account3rlp, err = rlp.EncodeToBytes(&account3) assert.NoError(t, err) addr3Node[1] = account3rlp node3rlp, err = rlp.EncodeToBytes(addr3Node) assert.NoError(t, err) branchNode[6] = crypto.Keccak256(node3rlp) rlpA, err = rlp.EncodeToBytes(branchNode) assert.NoError(t, err) reply.ID = 1 reply.Nodes = [][]byte{rlpA, nil} err = p2p.ExpectMsg(peer.app, StateNodesCode, reply) if err != nil { t.Errorf("unexpected StateNodes response: %v", err) } } func TestFirehoseBytecode(t *testing.T) { // Define two accounts to simulate transactions with acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey) // Two byte codes runtimeCode1 := common.FromHex("60606040525b600080fd00a165627a7a7230582012c9bd00152fa1c480f6827f81515bb19c3e63bf7ed9ffbb5fda0265983ac7980029") contractCode1 := append(common.FromHex("606060405260186000553415601357600080fd5b5b60368060216000396000f300"), runtimeCode1...) runtimeCode2 := common.FromHex("60606040525bfe00a165627a7a72305820c442e8fb2f1f8c3e73151a596376ff0f8da7f4de18ed79a6471c1ec584a14b080029") contractCode2 := append(common.FromHex("606060405260046000553415601057fe5b5b603380601e6000396000f300"), runtimeCode2...) signer := types.HomesteadSigner{} numBlocks := 2 // Chain generator with a couple of dummy contracts generator := func(i int, block *core.BlockGen) { switch i { case 0: tx1, err1 := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc1Addr, big.NewInt(2e5), params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err1) block.AddTx(tx1) tx2, err2 := types.SignTx(types.NewContractCreation(block.TxNonce(acc1Addr), new(big.Int), 1e5, nil, contractCode1), signer, acc1Key) assert.NoError(t, err2) block.AddTx(tx2) case 1: tx1, err1 := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc2Addr, big.NewInt(2e5), params.TxGas, nil, nil), signer, testBankKey) assert.NoError(t, err1) block.AddTx(tx1) tx2, err2 := types.SignTx(types.NewContractCreation(block.TxNonce(acc2Addr), new(big.Int), 1e5, nil, contractCode2), signer, acc2Key) assert.NoError(t, err2) block.AddTx(tx2) } } pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, numBlocks, generator, nil) peer, _ := newFirehoseTestPeer("peer", pm) defer peer.close() block1 := pm.blockchain.GetBlockByNumber(1) receipts1 := pm.blockchain.GetReceiptsByHash(block1.Hash()) contract1Addr := receipts1[1].ContractAddress block2 := pm.blockchain.GetBlockByNumber(2) receipts2 := pm.blockchain.GetReceiptsByHash(block2.Hash()) contract2Addr := receipts2[1].ContractAddress var reqID uint64 = 3758329 var request getBytecodeMsg request.ID = reqID request.Ref = []bytecodeRef{ {Account: contract1Addr.Bytes(), CodeHash: crypto.Keccak256Hash(runtimeCode1)}, {Account: crypto.Keccak256(contract2Addr.Bytes()), CodeHash: crypto.Keccak256Hash(runtimeCode2)}, } codes := bytecodeMsg{ID: reqID, Code: [][]byte{runtimeCode1, runtimeCode2}} assert.NoError(t, p2p.Send(peer.app, GetBytecodeCode, request)) if err := p2p.ExpectMsg(peer.app, BytecodeCode, codes); err != nil { t.Errorf("unexpected Bytecode response: %v", err) } } // Tests that a propagated malformed block (uncles or transactions don't match // with the hashes in the header) gets discarded and not broadcast forward. func TestBroadcastMalformedBlock(t *testing.T) { // Create a live node to test propagation with var ( engine = ethash.NewFaker() db = ethdb.NewMemDatabase() config = ¶ms.ChainConfig{} gspec = &core.Genesis{Config: config} genesis = gspec.MustCommit(db) ) blockchain, err := core.NewBlockChain(db, nil, config, engine, vm.Config{}, nil) if err != nil { t.Fatalf("failed to create new blockchain: %v", err) } pm, err := NewProtocolManager(config, nil, downloader.FullSync, DefaultConfig.NetworkID, new(event.TypeMux), new(testTxPool), engine, blockchain, db, nil) if err != nil { t.Fatalf("failed to start test protocol manager: %v", err) } pm.Start(2) defer pm.Stop() // Create two peers, one to send the malformed block with and one to check // propagation source, _ := newTestPeer("source", eth63, pm, true) defer source.close() sink, _ := newTestPeer("sink", eth63, pm, true) defer sink.close() ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1)) // Create various combinations of malformed blocks chain, _ := core.GenerateChain(ctx, gspec.Config, genesis, ethash.NewFaker(), db, 1, func(i int, gen *core.BlockGen) {}) malformedUncles := chain[0].Header() malformedUncles.UncleHash[0]++ malformedTransactions := chain[0].Header() malformedTransactions.TxHash[0]++ malformedEverything := chain[0].Header() malformedEverything.UncleHash[0]++ malformedEverything.TxHash[0]++ // Keep listening to broadcasts and notify if any arrives notify := make(chan struct{}, 1) go func() { if _, err := sink.app.ReadMsg(); err == nil { notify <- struct{}{} } }() // Try to broadcast all malformations and ensure they all get discarded for _, header := range []*types.Header{malformedUncles, malformedTransactions, malformedEverything} { block := types.NewBlockWithHeader(header).WithBody(chain[0].Transactions(), chain[0].Uncles()) if err := p2p.Send(source.app, NewBlockMsg, []interface{}{block, big.NewInt(131136)}); err != nil { t.Fatalf("failed to broadcast block: %v", err) } select { case <-notify: t.Fatalf("malformed block forwarded") case <-time.After(100 * time.Millisecond): } } }