// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie // Experimental code for separating data and structural information import ( "bytes" "encoding/binary" "fmt" "sort" "testing" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/trie/rlphacks" ) func TestV2HashBuilding(t *testing.T) { var keys []string for b := uint32(0); b < 100000; b++ { var preimage [4]byte binary.BigEndian.PutUint32(preimage[:], b) key := crypto.Keccak256(preimage[:])[:8] keys = append(keys, string(key)) } sort.Strings(keys) for i, key := range keys { if i > 0 && keys[i-1] == key { fmt.Printf("Duplicate!\n") } } tr := New(common.Hash{}) valueLong := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345") valueShort := []byte("VAL") for i, key := range keys { if i%2 == 0 { tr.Update([]byte(key), valueNode(valueLong)) } else { tr.Update([]byte(key), valueNode(valueShort)) } } trieHash := tr.Hash() hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var valueTape bytes.Buffer var groups []uint16 for i, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { var err error groups, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } valueTape.Reset() if i%2 == 0 { valueTape.Write(valueLong) } else { valueTape.Write(valueShort) } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() if _, err := GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } builtHash := hb.rootHash() if trieHash != builtHash { t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } } func TestV2Resolution(t *testing.T) { var keys []string for b := uint32(0); b < 100000; b++ { var preimage [4]byte binary.BigEndian.PutUint32(preimage[:], b) key := crypto.Keccak256(preimage[:])[:8] keys = append(keys, string(key)) } sort.Strings(keys) tr := New(common.Hash{}) value := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345") for _, key := range keys { tr.Update([]byte(key), valueNode(value)) } trieHash := tr.Hash() // Choose some keys to be resolved var rl RetainList // First, existing keys for i := 0; i < 1000; i += 200 { rl.AddKey([]byte(keys[i])) } // Next, some non-exsiting keys for i := 0; i < 1000; i++ { rl.AddKey(crypto.Keccak256([]byte(keys[i]))[:8]) } hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var valueTape bytes.Buffer var groups []uint16 for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { var err error groups, err = GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } valueTape.Reset() valueTape.Write(value) } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() if _, err := GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } tr1 := New(common.Hash{}) tr1.root = hb.root() builtHash := hb.rootHash() if trieHash != builtHash { t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } // Check the availability of the resolved keys for _, hex := range rl.hexes { key := hexToKeybytes(hex) _, found := tr1.Get(key) if !found { t.Errorf("Key %x was not resolved", hex) } } } // In this test, we try to combine both accounts and their storage items in the single // hash builder by tricking the GenStructStep slightly. // For storage items, we will be using the keys which are concatenation of the contract address hash, // incarnation encoding, and the storage location hash. // If we just allow it to be processed natually, then at the end of the processing of all storage // items, we would have entension node which branches off at some point, but includes incarnation encoding // in it, which we do not want. To cut it off, we will use the "trick". When we give the last // storage item to the GenStructStep, instead of setting `succ` to the empty slice, indicating that // nothing follows, we will set `succ` to a key which is the concatenation of the address hash, // incarnation encoding, except that the last nibble of the incoding is arbitrarily modified // This will cause the correct extension node to form. // In order to prevent the branch node on top of the extension node, we will need to manipulate // the `groups` array and truncate it to the level of the accounts func TestEmbeddedStorage(t *testing.T) { var accountAddress = common.Address{3, 4, 5, 6} addrHash := crypto.Keccak256(accountAddress[:]) incarnation := make([]byte, 8) binary.BigEndian.PutUint64(incarnation, uint64(2)) var location1 = common.Hash{1} locationKey1 := append(append([]byte{}, addrHash...), crypto.Keccak256(location1[:])...) var location2 = common.Hash{2} locationKey2 := append(append([]byte{}, addrHash...), crypto.Keccak256(location2[:])...) var location3 = common.Hash{3} locationKey3 := append(append([]byte{}, addrHash...), crypto.Keccak256(location3[:])...) var keys = []string{string(locationKey1), string(locationKey2), string(locationKey3)} sort.Strings(keys) tr := New(common.Hash{}) valueShort := []byte("VAL") for _, key := range keys { tr.Update([]byte(key)[common.HashLength:], valueNode(valueShort)) } trieHash := tr.Hash() hb := NewHashBuilder(true) var succ bytes.Buffer var curr bytes.Buffer var groups []uint16 var err error for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { groups, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) cutoff := 2 * common.HashLength succ.Write(curr.Bytes()[:cutoff-1]) succ.WriteByte(curr.Bytes()[cutoff-1] + 1) if groups, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } builtHash := hb.rootHash() if trieHash != builtHash { fmt.Printf("Trie built: %s\n", hb.root().fstring("")) fmt.Printf("Trie expected: %s\n", tr.root.fstring("")) t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } fmt.Printf("groups: %d\n", len(groups)) }