// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state_test import ( "context" "math/big" "testing" "github.com/ledgerwatch/turbo-geth/accounts/abi/bind" "github.com/ledgerwatch/turbo-geth/accounts/abi/bind/backends" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/consensus/ethash" "github.com/ledgerwatch/turbo-geth/core" "github.com/ledgerwatch/turbo-geth/core/state" "github.com/ledgerwatch/turbo-geth/core/state/contracts" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/core/vm" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/params" ) // Create revival problem func TestCreate2Revive(t *testing.T) { // Configure and generate a sample block chain var ( db = ethdb.NewMemDatabase() key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") address = crypto.PubkeyToAddress(key.PublicKey) funds = big.NewInt(1000000000) gspec = &core.Genesis{ Config: ¶ms.ChainConfig{ ChainID: big.NewInt(1), HomesteadBlock: new(big.Int), EIP155Block: new(big.Int), EIP158Block: big.NewInt(1), ConstantinopleBlock: big.NewInt(1), }, Alloc: core.GenesisAlloc{ address: {Balance: funds}, }, } genesis = gspec.MustCommit(db) genesisDb = db.MemCopy() signer = types.HomesteadSigner{} ) engine := ethash.NewFaker() blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil) if err != nil { t.Fatal(err) } blockchain.EnableReceipts(true) contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit) transactOpts := bind.NewKeyedTransactor(key) transactOpts.GasLimit = 1000000 var contractAddress common.Address var revive *contracts.Revive // Change this address whenever you make any changes in the code of the revive contract in // contracts/revive.sol var create2address = common.HexToAddress("e70fd65144383e1189bd710b1e23b61e26315ff4") // There are 4 blocks // In the first block, we deploy the "factory" contract Revive, which can create children contracts via CREATE2 opcode // In the second block, we create the first child contract // In the third block, we cause the first child contract to selfdestruct // In the forth block, we create the second child contract, and we expect it to have a "clean slate" of storage, // i.e. without any storage items that "inherited" from the first child contract by mistake ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1)) blocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, genesisDb, 4, func(i int, block *core.BlockGen) { var tx *types.Transaction switch i { case 0: contractAddress, tx, revive, err = contracts.DeployRevive(transactOpts, contractBackend) if err != nil { t.Fatal(err) } block.AddTx(tx) case 1: tx, err = revive.Deploy(transactOpts, big.NewInt(0)) if err != nil { t.Fatal(err) } block.AddTx(tx) case 2: tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), create2address, big.NewInt(0), 1000000, new(big.Int), nil), signer, key) if err != nil { t.Fatal(err) } err = contractBackend.SendTransaction(ctx, tx) if err != nil { t.Fatal(err) } block.AddTx(tx) case 3: tx, err = revive.Deploy(transactOpts, big.NewInt(0)) if err != nil { t.Fatal(err) } block.AddTx(tx) } contractBackend.Commit() }) st, _, _ := blockchain.State() if !st.Exist(address) { t.Error("expected account to exist") } if st.Exist(contractAddress) { t.Error("expected contractAddress to not exist before block 0", contractAddress.String()) } // BLOCK 1 if _, err = blockchain.InsertChain(types.Blocks{blocks[0]}); err != nil { t.Fatal(err) } st, _, _ = blockchain.State() if !st.Exist(contractAddress) { t.Error("expected contractAddress to exist at the block 1", contractAddress.String()) } // BLOCK 2 if _, err = blockchain.InsertChain(types.Blocks{blocks[1]}); err != nil { t.Fatal(err) } var it *contracts.ReviveDeployEventIterator it, err = revive.FilterDeployEvent(nil) if err != nil { t.Fatal(err) } if !it.Next() { t.Error("Expected DeployEvent") } if it.Event.D != create2address { t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address) } st, _, _ = blockchain.State() if !st.Exist(create2address) { t.Error("expected create2address to exist at the block 2", create2address.String()) } // We expect number 0x42 in the position [2], because it is the block number 2 check2 := st.GetState(create2address, common.BigToHash(big.NewInt(2))) if check2 != common.HexToHash("0x42") { t.Errorf("expected 0x42 in position 2, got: %x", check2) } // BLOCK 3 if _, err = blockchain.InsertChain(types.Blocks{blocks[2]}); err != nil { t.Fatal(err) } st, _, _ = blockchain.State() if st.Exist(create2address) { t.Error("expected create2address to be self-destructed at the block 3", create2address.String()) } // BLOCK 4 if _, err = blockchain.InsertChain(types.Blocks{blocks[3]}); err != nil { t.Fatal(err) } it, err = revive.FilterDeployEvent(nil) if err != nil { t.Fatal(err) } if !it.Next() { t.Error("Expected DeployEvent") } if it.Event.D != create2address { t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address) } st, _, _ = blockchain.State() if !st.Exist(create2address) { t.Error("expected create2address to exist at the block 2", create2address.String()) } // We expect number 0x42 in the position [4], because it is the block number 4 check4 := st.GetState(create2address, common.BigToHash(big.NewInt(4))) if check4 != common.HexToHash("0x42") { t.Errorf("expected 0x42 in position 4, got: %x", check4) } // We expect number 0x0 in the position [2], because it is the block number 4 check2 = st.GetState(create2address, common.BigToHash(big.NewInt(2))) if check2 != common.HexToHash("0x0") { t.Errorf("expected 0x0 in position 2, got: %x", check2) } } func TestReorgOverSelfDestruct(t *testing.T) { // Configure and generate a sample block chain var ( db = ethdb.NewMemDatabase() key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") address = crypto.PubkeyToAddress(key.PublicKey) funds = big.NewInt(1000000000) gspec = &core.Genesis{ Config: ¶ms.ChainConfig{ ChainID: big.NewInt(1), HomesteadBlock: new(big.Int), EIP155Block: new(big.Int), EIP158Block: big.NewInt(1), ConstantinopleBlock: big.NewInt(1), }, Alloc: core.GenesisAlloc{ address: {Balance: funds}, }, } genesis = gspec.MustCommit(db) ) engine := ethash.NewFaker() blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil) if err != nil { t.Fatal(err) } blockchain.EnableReceipts(true) contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit) transactOpts := bind.NewKeyedTransactor(key) transactOpts.GasLimit = 1000000 var contractAddress common.Address var selfDestruct *contracts.Selfdestruct ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1)) // Here we generate 3 blocks, two of which (the one with "Change" invocation and "Destruct" invocation will be reverted during the reorg) blocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, db.MemCopy(), 3, func(i int, block *core.BlockGen) { var tx *types.Transaction switch i { case 0: contractAddress, tx, selfDestruct, err = contracts.DeploySelfdestruct(transactOpts, contractBackend) if err != nil { t.Fatal(err) } block.AddTx(tx) case 1: tx, err = selfDestruct.Change(transactOpts) if err != nil { t.Fatal(err) } block.AddTx(tx) case 2: tx, err = selfDestruct.Destruct(transactOpts) if err != nil { t.Fatal(err) } block.AddTx(tx) } contractBackend.Commit() }) // Create a longer chain, with 4 blocks (with higher total difficulty) that reverts the change of stroage self-destruction of the contract contractBackendLonger := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit) transactOptsLonger := bind.NewKeyedTransactor(key) transactOptsLonger.GasLimit = 1000000 longerBlocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, db.MemCopy(), 4, func(i int, block *core.BlockGen) { var tx *types.Transaction switch i { case 0: _, tx, _, err = contracts.DeploySelfdestruct(transactOptsLonger, contractBackendLonger) if err != nil { t.Fatal(err) } block.AddTx(tx) } contractBackendLonger.Commit() }) st, _, _ := blockchain.State() if !st.Exist(address) { t.Error("expected account to exist") } if st.Exist(contractAddress) { t.Error("expected contractAddress to not exist before block 0", contractAddress.String()) } // BLOCK 1 if _, err = blockchain.InsertChain(types.Blocks{blocks[0]}); err != nil { t.Fatal(err) } st, _, _ = blockchain.State() if !st.Exist(contractAddress) { t.Error("expected contractAddress to exist at the block 1", contractAddress.String()) } // Remember value of field "x" (storage item 0) after the first block, to check after rewinding correctValueX := st.GetState(contractAddress, common.Hash{}) // BLOCKS 2 + 3 if _, err = blockchain.InsertChain(types.Blocks{blocks[1], blocks[2]}); err != nil { t.Fatal(err) } st, _, _ = blockchain.State() if st.Exist(contractAddress) { t.Error("expected contractAddress to not exist at the block 3", contractAddress.String()) } // REORG of block 2 and 3, and insert new (empty) BLOCK 2, 3, and 4 if _, err = blockchain.InsertChain(types.Blocks{longerBlocks[1], longerBlocks[2], longerBlocks[3]}); err != nil { t.Fatal(err) } st, _, _ = blockchain.State() if !st.Exist(contractAddress) { t.Error("expected contractAddress to exist at the block 4", contractAddress.String()) } // Reload blockchain from the database blockchain, err = core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil) if err != nil { t.Fatal(err) } st, _, _ = blockchain.State() valueX := st.GetState(contractAddress, common.Hash{}) if valueX != correctValueX { t.Fatalf("storage value has changed after reorg: %x, expected %x", valueX, correctValueX) } } func TestCreateOnExistingStorage(t *testing.T) { // Configure and generate a sample block chain var ( db = ethdb.NewMemDatabase() key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") address = crypto.PubkeyToAddress(key.PublicKey) // Address of the contract that will be deployed contractAddr = common.HexToAddress("0x3a220f351252089d385b29beca14e27f204c296a") funds = big.NewInt(1000000000) gspec = &core.Genesis{ Config: ¶ms.ChainConfig{ ChainID: big.NewInt(1), HomesteadBlock: new(big.Int), EIP155Block: new(big.Int), EIP158Block: big.NewInt(1), ConstantinopleBlock: big.NewInt(1), }, Alloc: core.GenesisAlloc{ address: {Balance: funds}, // Pre-existing storage item in an account without code contractAddr: {Balance: funds, Storage: map[common.Hash]common.Hash{{}: common.HexToHash("0x42")}}, }, } genesis = gspec.MustCommit(db) genesisDb = db.MemCopy() ) engine := ethash.NewFaker() blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil) if err != nil { t.Fatal(err) } blockchain.EnableReceipts(true) contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit) transactOpts := bind.NewKeyedTransactor(key) transactOpts.GasLimit = 1000000 var contractAddress common.Address // There is one block, and it ends up deploying Revive contract (could be any other contract, it does not really matter) // On the address contractAddr, where there is a storage item in the genesis, but no contract code // We expect the pre-existing storage items to be removed by the deployment ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1)) blocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, genesisDb, 4, func(i int, block *core.BlockGen) { var tx *types.Transaction switch i { case 0: contractAddress, tx, _, err = contracts.DeployRevive(transactOpts, contractBackend) if err != nil { t.Fatal(err) } block.AddTx(tx) } contractBackend.Commit() }) st, _, _ := blockchain.State() if !st.Exist(address) { t.Error("expected account to exist") } if contractAddress != contractAddr { t.Errorf("expected contract address to be %x, got: %x", contractAddr, contractAddress) } // BLOCK 1 if _, err = blockchain.InsertChain(types.Blocks{blocks[0]}); err != nil { t.Fatal(err) } st, _, _ = blockchain.State() if !st.Exist(contractAddress) { t.Error("expected contractAddress to exist at the block 1", contractAddress.String()) } // We expect number 0x42 in the position [2], because it is the block number 2 check0 := st.GetState(contractAddress, common.BigToHash(big.NewInt(0))) if check0 != common.HexToHash("0x0") { t.Errorf("expected 0x00 in position 0, got: %x", check0) } } func TestReproduceCrash(t *testing.T) { // This example was taken from Ropsten contract that used to cause a crash // it is created in the block 598915 and then there are 3 transactions modifying // its storage in the same block: // 1. Setting storageKey 1 to a non-zero value // 2. Setting storageKey 2 to a non-zero value // 3. Setting both storageKey1 and storageKey2 to zero values value0 := common.Hash{} contract := common.HexToAddress("0x71dd1027069078091B3ca48093B00E4735B20624") storageKey1 := common.HexToHash("0x0e4c0e7175f9d22279a4f63ff74f7fa28b7a954a6454debaa62ce43dd9132541") value1 := common.HexToHash("0x016345785d8a0000") storageKey2 := common.HexToHash("0x0e4c0e7175f9d22279a4f63ff74f7fa28b7a954a6454debaa62ce43dd9132542") value2 := common.HexToHash("0x58c00a51") db := ethdb.NewMemDatabase() tds, err := state.NewTrieDbState(common.Hash{}, db, 0) if err != nil { t.Errorf("could not create TrieDbState: %v", err) } tsw := tds.TrieStateWriter() intraBlockState := state.New(tds) ctx := context.Background() // Start the 1st transaction tds.StartNewBuffer() intraBlockState.CreateAccount(contract, true) if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil { t.Errorf("error finalising 1st tx: %v", err) } // Start the 2nd transaction tds.StartNewBuffer() intraBlockState.SetState(contract, storageKey1, value1) if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil { t.Errorf("error finalising 1st tx: %v", err) } // Start the 3rd transaction tds.StartNewBuffer() intraBlockState.AddBalance(contract, big.NewInt(1000000000)) intraBlockState.SetState(contract, storageKey2, value2) if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil { t.Errorf("error finalising 1st tx: %v", err) } // Start the 4th transaction - clearing both storage cells tds.StartNewBuffer() intraBlockState.SubBalance(contract, big.NewInt(1000000000)) intraBlockState.SetState(contract, storageKey1, value0) intraBlockState.SetState(contract, storageKey2, value0) if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil { t.Errorf("error finalising 1st tx: %v", err) } if _, err = tds.ComputeTrieRoots(); err != nil { t.Errorf("ComputeTrieRoots failed: %v", err) } // We expect the list of prunable entries to be empty prunables := tds.TriePruningDebugDump() if len(prunables) > 0 { t.Errorf("Expected empty list of prunables, got:\n %s", prunables) } }