// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package clique_test import ( "context" "math/big" "testing" "github.com/holiman/uint256" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon-lib/common/length" "github.com/ledgerwatch/erigon-lib/kv" "github.com/ledgerwatch/erigon-lib/kv/memdb" "github.com/ledgerwatch/erigon/consensus/clique" "github.com/ledgerwatch/erigon/core" "github.com/ledgerwatch/erigon/core/rawdb" "github.com/ledgerwatch/erigon/core/types" "github.com/ledgerwatch/erigon/crypto" "github.com/ledgerwatch/erigon/params" "github.com/ledgerwatch/erigon/turbo/stages" ) // This test case is a repro of an annoying bug that took us forever to catch. // In Clique PoA networks (Rinkeby, Görli, etc), consecutive blocks might have // the same state root (no block subsidy, empty block). If a node crashes, the // chain ends up losing the recent state and needs to regenerate it from blocks // already in the database. The bug was that processing the block *prior* to an // empty one **also completes** the empty one, ending up in a known-block error. func TestReimportMirroredState(t *testing.T) { // Initialize a Clique chain with a single signer var ( cliqueDB = memdb.NewTestDB(t) key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr = crypto.PubkeyToAddress(key.PublicKey) engine = clique.New(params.AllCliqueProtocolChanges, params.CliqueSnapshot, cliqueDB) signer = types.LatestSignerForChainID(nil) ) genspec := &types.Genesis{ ExtraData: make([]byte, clique.ExtraVanity+length.Addr+clique.ExtraSeal), Alloc: map[libcommon.Address]types.GenesisAccount{ addr: {Balance: big.NewInt(10000000000000000)}, }, Config: params.AllCliqueProtocolChanges, } copy(genspec.ExtraData[clique.ExtraVanity:], addr[:]) m := stages.MockWithGenesisEngine(t, genspec, engine, false) // Generate a batch of blocks, each properly signed getHeader := func(hash libcommon.Hash, number uint64) (h *types.Header) { if err := m.DB.View(context.Background(), func(tx kv.Tx) error { h = rawdb.ReadHeader(tx, hash, number) return nil }); err != nil { panic(err) } return h } chain, err := core.GenerateChain(m.ChainConfig, m.Genesis, m.Engine, m.DB, 3, func(i int, block *core.BlockGen) { // The chain maker doesn't have access to a chain, so the difficulty will be // lets unset (nil). Set it here to the correct value. block.SetDifficulty(clique.DiffInTurn) // We want to simulate an empty middle block, having the same state as the // first one. The last is needs a state change again to force a reorg. if i != 1 { baseFee, _ := uint256.FromBig(block.GetHeader().BaseFee) tx, err := types.SignTx(types.NewTransaction(block.TxNonce(addr), libcommon.Address{0x00}, new(uint256.Int), params.TxGas, baseFee, nil), *signer, key) if err != nil { panic(err) } block.AddTxWithChain(getHeader, engine, tx) } }, false /* intermediateHashes */) if err != nil { t.Fatalf("generate blocks: %v", err) } for i, block := range chain.Blocks { header := block.Header() if i > 0 { header.ParentHash = chain.Blocks[i-1].Hash() } header.Extra = make([]byte, clique.ExtraVanity+clique.ExtraSeal) header.Difficulty = clique.DiffInTurn sig, _ := crypto.Sign(clique.SealHash(header).Bytes(), key) copy(header.Extra[len(header.Extra)-clique.ExtraSeal:], sig) chain.Headers[i] = header chain.Blocks[i] = block.WithSeal(header) } // Insert the first two blocks and make sure the chain is valid if err := m.InsertChain(chain.Slice(0, 2)); err != nil { t.Fatalf("failed to insert initial blocks: %v", err) } if err := m.DB.View(context.Background(), func(tx kv.Tx) error { if head, err1 := rawdb.ReadBlockByHash(tx, rawdb.ReadHeadHeaderHash(tx)); err1 != nil { t.Errorf("could not read chain head: %v", err1) } else if head.NumberU64() != 2 { t.Errorf("chain head mismatch: have %d, want %d", head.NumberU64(), 2) } return nil }); err != nil { t.Fatal(err) } // Simulate a crash by creating a new chain on top of the database, without // flushing the dirty states out. Insert the last block, triggering a sidechain // reimport. if err := m.InsertChain(chain.Slice(2, chain.Length())); err != nil { t.Fatalf("failed to insert final block: %v", err) } if err := m.DB.View(context.Background(), func(tx kv.Tx) error { if head, err1 := rawdb.ReadBlockByHash(tx, rawdb.ReadHeadHeaderHash(tx)); err1 != nil { t.Errorf("could not read chain head: %v", err1) } else if head.NumberU64() != 3 { t.Errorf("chain head mismatch: have %d, want %d", head.NumberU64(), 3) } return nil }); err != nil { t.Fatal(err) } }