package trie import ( "fmt" "io" "math/big" "math/bits" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/pool" "github.com/ledgerwatch/turbo-geth/core/types/accounts" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/rlp" "github.com/ledgerwatch/turbo-geth/trie/rlphacks" "golang.org/x/crypto/sha3" ) const hashStackStride = common.HashLength + 1 // + 1 byte for RLP encoding var EmptyCodeHash = crypto.Keccak256Hash(nil) // HashBuilder implements the interface `structInfoReceiver` and opcodes that the structural information of the trie // is comprised of // DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure type HashBuilder struct { keyTape BytesTape // the source of key sequence valueTape RlpSerializableTape // the source of values (for values that are not accounts or contracts) nonceTape Uint64Tape // the source of nonces for accounts and contracts (field 0) balanceTape BigIntTape // the source of balances for accounts and contracts (field 1) sSizeTape Uint64Tape // the source of storage sizes for contracts (field 4) hashTape HashTape // the source of hashes codeTape BytesTape // the source of bytecodes byteArrayWriter *ByteArrayWriter hashStack []byte // Stack of sub-slices, each 33 bytes each, containing RLP encodings of node hashes (or of nodes themselves, if shorter than 32 bytes) nodeStack []node // Stack of nodes acc accounts.Account // Working account instance (to avoid extra allocations) sha keccakState // Keccak primitive that can absorb data (Write), and get squeezed to the hash out (Read) trace bool // Set to true when HashBuilder is required to print trace information for diagnostics } // NewHashBuilder creates a new HashBuilder func NewHashBuilder(trace bool) *HashBuilder { return &HashBuilder{ sha: sha3.NewLegacyKeccak256().(keccakState), byteArrayWriter: &ByteArrayWriter{}, trace: trace, } } // SetKeyTape sets the key tape to be used by this builder (opcodes leaf, leafHash, accountLeaf, accountLeafHash) func (hb *HashBuilder) SetKeyTape(keyTape BytesTape) { hb.keyTape = keyTape } // SetValueTape sets the value tape to be used by this builder (opcodes leaf and leafHash) func (hb *HashBuilder) SetValueTape(valueTape RlpSerializableTape) { hb.valueTape = valueTape } // SetNonceTape sets the nonce tape to be used by this builder (opcodes accountLeaf, accountLeafHash) func (hb *HashBuilder) SetNonceTape(nonceTape Uint64Tape) { hb.nonceTape = nonceTape } // SetBalanceTape sets the balance tape to be used by this builder (opcodes accountLeaf, accountLeafHash) func (hb *HashBuilder) SetBalanceTape(balanceTape BigIntTape) { hb.balanceTape = balanceTape } // SetHashTape sets the hash tape to be used by this builder (opcode hash) func (hb *HashBuilder) SetHashTape(hashTape HashTape) { hb.hashTape = hashTape } // SetSSizeTape sets the storage size tape to be used by this builder (opcodes accountLeaf, accountLeafHashs) func (hb *HashBuilder) SetSSizeTape(sSizeTape Uint64Tape) { hb.sSizeTape = sSizeTape } // SetCodeTape sets the code tape to be used by this builder (opcode CODE) func (hb *HashBuilder) SetCodeTape(codeTape BytesTape) { hb.codeTape = codeTape } // Reset makes the HashBuilder suitable for reuse func (hb *HashBuilder) Reset() { hb.hashStack = hb.hashStack[:0] hb.nodeStack = hb.nodeStack[:0] } func (hb *HashBuilder) leaf(length int) error { if hb.trace { fmt.Printf("LEAF %d\n", length) } hex, err := hb.keyTape.Next() if err != nil { return err } if length < 0 { return fmt.Errorf("length %d", length) } key := hex[len(hex)-length:] val, err := hb.valueTape.Next() if err != nil { return err } s := &shortNode{Key: common.CopyBytes(key), Val: valueNode(common.CopyBytes(val.RawBytes()))} hb.nodeStack = append(hb.nodeStack, s) if err := hb.leafHashWithKeyVal(key, val); err != nil { return err } if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } // To be called internally func (hb *HashBuilder) leafHashWithKeyVal(key []byte, val RlpSerializable) error { var hash [hashStackStride]byte // RLP representation of hash (or of un-hashed value if short) // Compute the total length of binary representation var keyPrefix [1]byte var lenPrefix [4]byte var kp, kl int // Write key var compactLen int var ni int var compact0 byte if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble ni = 1 } else { compact0 = 0x20 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble ni = 1 } } if compactLen > 1 { keyPrefix[0] = 0x80 + byte(compactLen) kp = 1 kl = compactLen } else { kl = 1 } err := hb.completeLeafHash(kp, kl, compactLen, key, keyPrefix, compact0, ni, lenPrefix, hash[:], val) if err != nil { return err } hb.hashStack = append(hb.hashStack, hash[:]...) if len(hb.hashStack) > hashStackStride*len(hb.nodeStack) { hb.nodeStack = append(hb.nodeStack, nil) } return nil } func (hb *HashBuilder) completeLeafHash(kp, kl, compactLen int, key []byte, keyPrefix [1]byte, compact0 byte, ni int, lenPrefix [4]byte, hash []byte, val RlpSerializable) error { totalLen := kp + kl + val.DoubleRLPLen() pt := rlphacks.GenerateStructLen(lenPrefix[:], totalLen) var writer io.Writer var reader io.Reader if totalLen+pt < common.HashLength { // Embedded node hb.byteArrayWriter.Setup(hash[:], 0) writer = hb.byteArrayWriter } else { hb.sha.Reset() writer = hb.sha reader = hb.sha } if _, err := writer.Write(lenPrefix[:pt]); err != nil { return err } if _, err := writer.Write(keyPrefix[:kp]); err != nil { return err } var b [1]byte b[0] = compact0 if _, err := writer.Write(b[:]); err != nil { return err } for i := 1; i < compactLen; i++ { b[0] = key[ni]*16 + key[ni+1] if _, err := writer.Write(b[:]); err != nil { return err } ni += 2 } if err := val.ToDoubleRLP(writer); err != nil { return err } if reader != nil { hash[0] = 0x80 + common.HashLength if _, err := reader.Read(hash[1:]); err != nil { return err } } return nil } func (hb *HashBuilder) leafHash(length int) error { if hb.trace { fmt.Printf("LEAFHASH %d\n", length) } hex, err := hb.keyTape.Next() if err != nil { return err } if length < 0 { return fmt.Errorf("length %d", length) } key := hex[len(hex)-length:] val, err := hb.valueTape.Next() if err != nil { return err } return hb.leafHashWithKeyVal(key, val) } func (hb *HashBuilder) accountLeaf(length int, fieldSet uint32) error { if hb.trace { fmt.Printf("ACCOUNTLEAF %d (%b)\n", length, fieldSet) } hex, err := hb.keyTape.Next() if err != nil { return err } key := hex[len(hex)-length:] hb.acc.Root = EmptyRoot hb.acc.CodeHash = EmptyCodeHash hb.acc.Nonce = 0 hb.acc.Balance.SetUint64(0) hb.acc.Initialised = true hb.acc.StorageSize = 0 hb.acc.HasStorageSize = false if fieldSet&uint32(1) != 0 { if hb.acc.Nonce, err = hb.nonceTape.Next(); err != nil { return err } } if fieldSet&uint32(2) != 0 { var balance *big.Int if balance, err = hb.balanceTape.Next(); err != nil { return err } hb.acc.Balance.Set(balance) } popped := 0 var root node if fieldSet&uint32(4) != 0 { copy(hb.acc.Root[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-common.HashLength:len(hb.hashStack)-popped*hashStackStride]) if hb.acc.Root != EmptyRoot { // Root is on top of the stack root = hb.nodeStack[len(hb.nodeStack)-popped-1] if root == nil { root = hashNode(common.CopyBytes(hb.acc.Root[:])) } } popped++ } if fieldSet&uint32(8) != 0 { copy(hb.acc.CodeHash[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-common.HashLength:len(hb.hashStack)-popped*hashStackStride]) popped++ } if fieldSet&uint32(16) != 0 { if hb.acc.StorageSize, err = hb.sSizeTape.Next(); err != nil { return err } hb.acc.HasStorageSize = hb.acc.StorageSize > 0 } var accCopy accounts.Account accCopy.Copy(&hb.acc) s := &shortNode{Key: common.CopyBytes(key), Val: &accountNode{accCopy, root, true}} // this invocation will take care of the popping given number of items from both hash stack and node stack, // pushing resulting hash to the hash stack, and nil to the node stack if err = hb.accountLeafHashWithKey(key, popped); err != nil { return err } // Replace top of the stack hb.nodeStack[len(hb.nodeStack)-1] = s if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) accountLeafHash(length int, fieldSet uint32) error { if hb.trace { fmt.Printf("ACCOUNTLEAFHASH %d (%b)\n", length, fieldSet) } hex, err := hb.keyTape.Next() if err != nil { return err } key := hex[len(hex)-length:] hb.acc.Root = EmptyRoot hb.acc.CodeHash = EmptyCodeHash hb.acc.Nonce = 0 hb.acc.Balance.SetUint64(0) hb.acc.Initialised = true hb.acc.StorageSize = 0 hb.acc.HasStorageSize = false if fieldSet&uint32(1) != 0 { if hb.acc.Nonce, err = hb.nonceTape.Next(); err != nil { return err } } if fieldSet&uint32(2) != 0 { var balance *big.Int if balance, err = hb.balanceTape.Next(); err != nil { return err } hb.acc.Balance.Set(balance) } popped := 0 if fieldSet&uint32(4) != 0 { copy(hb.acc.Root[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-common.HashLength:len(hb.hashStack)-popped*hashStackStride]) popped++ } if fieldSet&uint32(8) != 0 { copy(hb.acc.CodeHash[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-common.HashLength:len(hb.hashStack)-popped*hashStackStride]) popped++ } if fieldSet&uint32(16) != 0 { if hb.acc.StorageSize, err = hb.sSizeTape.Next(); err != nil { return err } hb.acc.HasStorageSize = hb.acc.StorageSize > 0 } return hb.accountLeafHashWithKey(key, popped) } // To be called internally func (hb *HashBuilder) accountLeafHashWithKey(key []byte, popped int) error { var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value) // Compute the total length of binary representation var keyPrefix [1]byte var lenPrefix [4]byte var kp, kl int // Write key var compactLen int var ni int var compact0 byte if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 48 + key[0] // Odd (1<<4) + first nibble ni = 1 } else { compact0 = 32 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 16 + key[0] // Odd (1<<4) + first nibble ni = 1 } } if compactLen > 1 { keyPrefix[0] = byte(128 + compactLen) kp = 1 kl = compactLen } else { kl = 1 } valLen := hb.acc.EncodingLengthForHashing() valBuf := pool.GetBuffer(valLen) defer pool.PutBuffer(valBuf) hb.acc.EncodeForHashing(valBuf.B) val := rlphacks.RlpEncodedBytes(valBuf.B) err := hb.completeLeafHash(kp, kl, compactLen, key, keyPrefix, compact0, ni, lenPrefix, hash[:], val) if err != nil { return err } if popped > 0 { hb.hashStack = hb.hashStack[:len(hb.hashStack)-popped*hashStackStride] hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-popped] } hb.hashStack = append(hb.hashStack, hash[:]...) hb.nodeStack = append(hb.nodeStack, nil) return nil } func (hb *HashBuilder) extension(key []byte) error { if hb.trace { fmt.Printf("EXTENSION %x\n", key) } nd := hb.nodeStack[len(hb.nodeStack)-1] switch n := nd.(type) { case nil: branchHash := common.CopyBytes(hb.hashStack[len(hb.hashStack)-common.HashLength:]) hb.nodeStack[len(hb.nodeStack)-1] = &shortNode{Key: common.CopyBytes(key), Val: hashNode(branchHash)} case *fullNode: hb.nodeStack[len(hb.nodeStack)-1] = &shortNode{Key: common.CopyBytes(key), Val: n} default: return fmt.Errorf("wrong Val type for an extension: %T", nd) } if err := hb.extensionHash(key); err != nil { return err } if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) extensionHash(key []byte) error { if hb.trace { fmt.Printf("EXTENSIONHASH %x\n", key) } branchHash := hb.hashStack[len(hb.hashStack)-hashStackStride:] // Compute the total length of binary representation var keyPrefix [1]byte var lenPrefix [4]byte var kp, kl int // Write key var compactLen int var ni int var compact0 byte // https://github.com/ethereum/wiki/wiki/Patricia-Tree#specification-compact-encoding-of-hex-sequence-with-optional-terminator if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble ni = 1 } else { compact0 = 0x20 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble ni = 1 } } if compactLen > 1 { keyPrefix[0] = 0x80 + byte(compactLen) kp = 1 kl = compactLen } else { kl = 1 } totalLen := kp + kl + 33 pt := rlphacks.GenerateStructLen(lenPrefix[:], totalLen) hb.sha.Reset() if _, err := hb.sha.Write(lenPrefix[:pt]); err != nil { return err } if _, err := hb.sha.Write(keyPrefix[:kp]); err != nil { return err } var b [1]byte b[0] = compact0 if _, err := hb.sha.Write(b[:]); err != nil { return err } for i := 1; i < compactLen; i++ { b[0] = key[ni]*16 + key[ni+1] if _, err := hb.sha.Write(b[:]); err != nil { return err } ni += 2 } if _, err := hb.sha.Write(branchHash[:branchHash[0]-127]); err != nil { return err } // Replace previous hash with the new one if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-common.HashLength:]); err != nil { return err } if _, ok := hb.nodeStack[len(hb.nodeStack)-1].(*fullNode); ok { return fmt.Errorf("extensionHash cannot be emitted when a node is on top of the stack") } return nil } func (hb *HashBuilder) branch(set uint16) error { if hb.trace { fmt.Printf("BRANCH (%b)\n", set) } f := &fullNode{} digits := bits.OnesCount16(set) if len(hb.nodeStack) < digits { return fmt.Errorf("len(hb.nodeStask) %d < digits %d", len(hb.nodeStack), digits) } nodes := hb.nodeStack[len(hb.nodeStack)-digits:] hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:] var i int for digit := uint(0); digit < 16; digit++ { if ((uint16(1) << digit) & set) != 0 { if nodes[i] == nil { f.Children[digit] = hashNode(common.CopyBytes(hashes[hashStackStride*i+1 : hashStackStride*(i+1)])) } else { f.Children[digit] = nodes[i] } i++ } } hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1] hb.nodeStack[len(hb.nodeStack)-1] = f if err := hb.branchHash(set); err != nil { return err } copy(f.flags.hash[:], hb.hashStack[len(hb.hashStack)-common.HashLength:]) if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) branchHash(set uint16) error { if hb.trace { fmt.Printf("BRANCHHASH (%b)\n", set) } digits := bits.OnesCount16(set) if len(hb.hashStack) < hashStackStride*digits { return fmt.Errorf("len(hb.hashStack) %d < hashStackStride*digits %d", len(hb.hashStack), hashStackStride*digits) } hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:] // Calculate the size of the resulting RLP totalSize := 17 // These are 17 length prefixes var i int for digit := uint(0); digit < 16; digit++ { if ((uint16(1) << digit) & set) != 0 { if hashes[hashStackStride*i] == 0x80+common.HashLength { totalSize += common.HashLength } else { // Embedded node totalSize += int(hashes[hashStackStride*i] - rlp.EmptyListCode) } i++ } } hb.sha.Reset() var lenPrefix [4]byte pt := rlphacks.GenerateStructLen(lenPrefix[:], totalSize) if _, err := hb.sha.Write(lenPrefix[:pt]); err != nil { return err } // Output children hashes or embedded RLPs i = 0 var b [1]byte b[0] = rlp.EmptyStringCode for digit := uint(0); digit < 17; digit++ { if ((uint16(1) << digit) & set) != 0 { if hashes[hashStackStride*i] == byte(0x80+common.HashLength) { if _, err := hb.sha.Write(hashes[hashStackStride*i : hashStackStride*i+hashStackStride]); err != nil { return err } } else { // Embedded node size := int(hashes[hashStackStride*i]) - rlp.EmptyListCode if _, err := hb.sha.Write(hashes[hashStackStride*i : hashStackStride*i+size+1]); err != nil { return err } } i++ } else { if _, err := hb.sha.Write(b[:]); err != nil { return err } } } hb.hashStack = hb.hashStack[:len(hb.hashStack)-hashStackStride*digits+hashStackStride] hb.hashStack[len(hb.hashStack)-hashStackStride] = 0x80 + common.HashLength if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-common.HashLength:]); err != nil { return err } if hashStackStride*len(hb.nodeStack) > len(hb.hashStack) { hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1] if hb.trace { fmt.Printf("Setting hb.nodeStack[%d] to nil\n", len(hb.nodeStack)-1) } hb.nodeStack[len(hb.nodeStack)-1] = nil } return nil } func (hb *HashBuilder) hash(number int) error { if hb.trace { fmt.Printf("HASH %d\n", number) } for i := 0; i < number; i++ { hash, err := hb.hashTape.Next() if err != nil { return err } hb.hashStack = append(hb.hashStack, 0x80+common.HashLength) hb.hashStack = append(hb.hashStack, hash[:]...) hb.nodeStack = append(hb.nodeStack, nil) } if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) code() ([]byte, common.Hash, error) { if hb.trace { fmt.Printf("CODE\n") } code, err := hb.codeTape.Next() if err != nil { return nil, common.Hash{}, err } code = common.CopyBytes(code) hb.nodeStack = append(hb.nodeStack, nil) hb.sha.Reset() if _, err := hb.sha.Write(code); err != nil { return nil, common.Hash{}, err } var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value) hash[0] = 0x80 + common.HashLength if _, err := hb.sha.Read(hash[1:]); err != nil { return nil, common.Hash{}, err } hb.hashStack = append(hb.hashStack, hash[:]...) return code, common.BytesToHash(hash[1:]), nil } func (hb *HashBuilder) emptyRoot() { if hb.trace { fmt.Printf("EMPTYROOT\n") } hb.nodeStack = append(hb.nodeStack, nil) var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value) hash[0] = 0x80 + common.HashLength copy(hash[1:], EmptyRoot[:]) hb.hashStack = append(hb.hashStack, hash[:]...) } func (hb *HashBuilder) RootHash() (common.Hash, error) { if !hb.hasRoot() { return common.Hash{}, fmt.Errorf("no root in the tree") } return hb.rootHash(), nil } func (hb *HashBuilder) rootHash() common.Hash { var hash common.Hash copy(hash[:], hb.hashStack[1:hashStackStride]) return hash } func (hb *HashBuilder) root() node { if hb.trace && len(hb.nodeStack) > 0 { fmt.Printf("len(hb.nodeStack)=%d\n", len(hb.nodeStack)) } return hb.nodeStack[len(hb.nodeStack)-1] } func (hb *HashBuilder) hasRoot() bool { return len(hb.nodeStack) > 0 }