//go:build gofuzzbeta // +build gofuzzbeta package txpool import ( "bytes" "context" "encoding/binary" "testing" "github.com/holiman/uint256" "github.com/ledgerwatch/erigon-lib/chain" "github.com/ledgerwatch/erigon-lib/common/u256" "github.com/ledgerwatch/erigon-lib/gointerfaces" "github.com/ledgerwatch/erigon-lib/gointerfaces/remote" "github.com/ledgerwatch/erigon-lib/kv" "github.com/ledgerwatch/erigon-lib/kv/kvcache" "github.com/ledgerwatch/erigon-lib/kv/mdbx" "github.com/ledgerwatch/erigon-lib/kv/memdb" "github.com/ledgerwatch/erigon-lib/rlp" "github.com/ledgerwatch/log/v3" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" ) // https://blog.golang.org/fuzz-beta // golang.org/s/draft-fuzzing-design //gotip doc testing //gotip doc testing.F //gotip doc testing.F.AddRemoteTxs //gotip doc testing.F.Fuzz // gotip test -trimpath -v -fuzz=Fuzz -fuzztime=10s ./txpool func init() { //log.Root().SetHandler(log.LvlFilterHandler(log.LvlInfo, log.StderrHandler)) } func FuzzTwoQueue(f *testing.F) { f.Add([]uint8{0b11000, 0b00101, 0b000111}) f.Add([]uint8{0b10101, 0b11110, 0b11101, 0b10001}) f.Fuzz(func(t *testing.T, in []uint8) { t.Parallel() assert := assert.New(t) { sub := NewPendingSubPool(PendingSubPool, 1024) for _, i := range in { sub.UnsafeAdd(&metaTx{subPool: SubPoolMarker(i & 0b11111), Tx: &TxSlot{nonce: 1, value: *uint256.NewInt(1)}}) } sub.EnforceWorstInvariants() sub.EnforceBestInvariants() assert.Equal(len(in), sub.best.Len()) assert.Equal(len(in), sub.worst.Len()) assert.Equal(len(in), sub.Len()) var prevBest *uint8 for i := range sub.best { current := uint8(sub.best[i].subPool) if prevBest != nil { assert.LessOrEqual(current, *prevBest) } assert.Equal(i, sub.best[i].bestIndex) prevBest = ¤t } } { sub := NewSubPool(BaseFeeSubPool, 1024) for _, i := range in { sub.Add(&metaTx{subPool: SubPoolMarker(i & 0b11111), Tx: &TxSlot{nonce: 1, value: *uint256.NewInt(1)}}) } assert.Equal(len(in), sub.best.Len()) assert.Equal(len(in), sub.worst.Len()) assert.Equal(len(in), sub.Len()) for i := range *sub.best { assert.Equal(i, (*sub.best)[i].bestIndex) } for i := range *sub.worst { assert.Equal(i, (*sub.worst)[i].worstIndex) } var prevBest *uint8 i := sub.Len() for sub.Len() > 0 { best := uint8(sub.Best().subPool) assert.Equal(best, uint8(sub.PopBest().subPool)) if prevBest != nil { assert.LessOrEqual(best, *prevBest) } prevBest = &best i-- } assert.Zero(i) assert.Zero(sub.Len()) assert.Zero(sub.best.Len()) assert.Zero(sub.worst.Len()) } { sub := NewSubPool(QueuedSubPool, 1024) for _, i := range in { sub.Add(&metaTx{subPool: SubPoolMarker(i & 0b11111), Tx: &TxSlot{nonce: 1, value: *uint256.NewInt(1)}}) } var prev *uint8 i := sub.Len() for sub.Len() > 0 { worst := uint8(sub.Worst().subPool) assert.Equal(worst, uint8(sub.PopWorst().subPool)) if prev != nil { assert.GreaterOrEqual(worst, *prev) } prev = &worst i-- } assert.Zero(i) assert.Zero(sub.Len()) assert.Zero(sub.best.Len()) assert.Zero(sub.worst.Len()) } }) } func u64Slice(in []byte) ([]uint64, bool) { if len(in) < 8 { return nil, false } res := make([]uint64, len(in)/8) for i := 0; i < len(res); i++ { res[i] = binary.BigEndian.Uint64(in[i*8:]) } return res, true } func u8Slice(in []byte) ([]uint64, bool) { if len(in) < 1 { return nil, false } res := make([]uint64, len(in)) for i := 0; i < len(res); i++ { res[i] = uint64(in[i] % 32) } return res, true } func u16Slice(in []byte) ([]uint64, bool) { if len(in) < 2 { return nil, false } res := make([]uint64, len(in)/2) for i := 0; i < len(res); i++ { res[i] = uint64(binary.BigEndian.Uint16(in[i*2:])) } return res, true } func u256Slice(in []byte) ([]uint256.Int, bool) { if len(in) < 1 { return nil, false } res := make([]uint256.Int, len(in)) for i := 0; i < len(res); i++ { res[i].SetUint64(uint64(in[i] % 32)) } return res, true } func parseSenders(in []byte) (nonces []uint64, balances []uint256.Int) { for i := 0; i < len(in)-(1+1-1); i += 1 + 1 { nonce := uint64(in[i] % 8) if nonce == 0 { nonce = 1 } nonces = append(nonces, nonce) balances = append(balances, *uint256.NewInt(uint64(in[i+1]))) } return } func parseTxs(in []byte) (nonces, tips []uint64, values []uint256.Int) { for i := 0; i < len(in)-(1+1+1-1); i += 1 + 1 + 1 { nonce := uint64(in[i]) if nonce == 0 { nonce = 1 } nonces = append(nonces, nonce) tips = append(tips, uint64(in[i+1])) values = append(values, *uint256.NewInt(uint64(in[i+1+1]))) } return } func poolsFromFuzzBytes(rawTxNonce, rawValues, rawTips, rawFeeCap, rawSender []byte) (sendersInfo map[uint64]*sender, senderIDs map[string]uint64, txs TxSlots, ok bool) { if len(rawTxNonce) < 1 || len(rawValues) < 1 || len(rawTips) < 1 || len(rawFeeCap) < 1 || len(rawSender) < 1+1 { return nil, nil, txs, false } senderNonce, senderBalance := parseSenders(rawSender) txNonce, ok := u8Slice(rawTxNonce) if !ok { return nil, nil, txs, false } feeCap, ok := u8Slice(rawFeeCap) if !ok { return nil, nil, txs, false } tips, ok := u8Slice(rawTips) if !ok { return nil, nil, txs, false } values, ok := u256Slice(rawValues) if !ok { return nil, nil, txs, false } sendersInfo = map[uint64]*sender{} senderIDs = map[string]uint64{} senders := make(Addresses, 20*len(senderNonce)) for i := 0; i < len(senderNonce); i++ { senderID := uint64(i + 1) //non-zero expected binary.BigEndian.PutUint64(senders.At(i%senders.Len()), senderID) sendersInfo[senderID] = newSender(senderNonce[i], senderBalance[i%len(senderBalance)]) senderIDs[string(senders.At(i%senders.Len()))] = senderID } txs.txs = make([]*TxSlot, len(txNonce)) parseCtx := NewTxParseContext(chain.MainnetRules, *u256.N1) parseCtx.WithSender(false) for i := range txNonce { txs.txs[i] = &TxSlot{ nonce: txNonce[i], value: values[i%len(values)], tip: tips[i%len(tips)], feeCap: feeCap[i%len(feeCap)], } txRlp := fakeRlpTx(txs.txs[i], senders.At(i%senders.Len())) _, err := parseCtx.ParseTransaction(txRlp, 0, txs.txs[i], nil) if err != nil { panic(err) } txs.senders = append(txs.senders, senders.At(i%senders.Len())...) txs.isLocal = append(txs.isLocal, true) } return sendersInfo, senderIDs, txs, true } // fakeRlpTx add anything what identifying tx to `data` to make hash unique func fakeRlpTx(slot *TxSlot, data []byte) []byte { dataLen := rlp.U64Len(1) + //chainID rlp.U64Len(slot.nonce) + rlp.U64Len(slot.tip) + rlp.U64Len(slot.feeCap) + rlp.U64Len(0) + // gas rlp.StringLen(0) + // dest addr rlp.U256Len(&slot.value) + rlp.StringLen(len(data)) + // data rlp.ListPrefixLen(0) + //access list +3 // v,r,s buf := make([]byte, 1+rlp.ListPrefixLen(dataLen)+dataLen) buf[0] = byte(DynamicFeeTxType) p := 1 p += rlp.EncodeListPrefix(dataLen, buf[p:]) p += rlp.EncodeU64(1, buf[p:]) p += rlp.EncodeU64(slot.nonce, buf[p:]) p += rlp.EncodeU64(slot.tip, buf[p:]) p += rlp.EncodeU64(slot.feeCap, buf[p:]) p += rlp.EncodeU64(0, buf[p:]) //gas p += rlp.EncodeString([]byte{}, buf[p:]) //destrination addr bb := bytes.NewBuffer(buf[p:p]) _ = slot.value.EncodeRLP(bb) p += rlp.U256Len(&slot.value) p += rlp.EncodeString(data, buf[p:]) //data p += rlp.EncodeListPrefix(0, buf[p:]) // access list p += rlp.EncodeU64(1, buf[p:]) //v p += rlp.EncodeU64(1, buf[p:]) //r p += rlp.EncodeU64(1, buf[p:]) //s return buf[:] } func iterateSubPoolUnordered(subPool *SubPool, f func(tx *metaTx)) { for i := 0; i < subPool.best.Len(); i++ { f((*subPool.best)[i]) } } func splitDataset(in TxSlots) (TxSlots, TxSlots, TxSlots, TxSlots) { p1, p2, p3, p4 := TxSlots{}, TxSlots{}, TxSlots{}, TxSlots{} l := len(in.txs) / 4 p1.txs = in.txs[:l] p1.isLocal = in.isLocal[:l] p1.senders = in.senders[:l*20] p2.txs = in.txs[l : 2*l] p2.isLocal = in.isLocal[l : 2*l] p2.senders = in.senders[l*20 : 2*l*20] p3.txs = in.txs[2*l : 3*l] p3.isLocal = in.isLocal[2*l : 3*l] p3.senders = in.senders[2*l*20 : 3*l*20] p4.txs = in.txs[3*l : 4*l] p4.isLocal = in.isLocal[3*l : 4*l] p4.senders = in.senders[3*l*20 : 4*l*20] return p1, p2, p3, p4 } func FuzzOnNewBlocks(f *testing.F) { var u64 = [1 * 4]byte{1} var senderAddr = [1 + 1 + 1]byte{1} f.Add(u64[:], u64[:], u64[:], u64[:], senderAddr[:], uint8(12)) f.Add(u64[:], u64[:], u64[:], u64[:], senderAddr[:], uint8(14)) f.Add(u64[:], u64[:], u64[:], u64[:], senderAddr[:], uint8(123)) f.Fuzz(func(t *testing.T, txNonce, values, tips, feeCap, senderAddr []byte, pendingBaseFee1 uint8) { //t.Parallel() ctx := context.Background() pendingBaseFee := uint64(pendingBaseFee1%16 + 1) if pendingBaseFee == 0 { t.Skip() } if len(senderAddr) < 1+1+1 { t.Skip() } senders, senderIDs, txs, ok := poolsFromFuzzBytes(txNonce, values, tips, feeCap, senderAddr) if !ok { t.Skip() } assert, require := assert.New(t), require.New(t) err := txs.Valid() assert.NoError(err) var prevHashes Hashes ch := make(chan Hashes, 100) db := mdbx.NewMDBX(log.New()).InMem().WithTablessCfg(func(defaultBuckets kv.TableCfg) kv.TableCfg { return kv.TxpoolTablesCfg }).MustOpen() t.Cleanup(db.Close) coreDB := memdb.NewTestDB(t) cfg := DefaultConfig sendersCache := kvcache.New(kvcache.DefaultCoherentConfig) pool, err := New(ch, coreDB, cfg, sendersCache, chain.MainnetRules, *u256.N1) assert.NoError(err) pool.senders.senderIDs = senderIDs for addr, id := range senderIDs { pool.senders.senderID2Addr[id] = addr } pool.senders.senderID = uint64(len(senderIDs)) check := func(unwindTxs, minedTxs TxSlots, msg string) { pending, baseFee, queued := pool.pending, pool.baseFee, pool.queued best, worst := pending.Best(), pending.Worst() assert.LessOrEqual(pending.Len(), cfg.PendingSubPoolLimit) assert.False(worst != nil && best == nil, msg) assert.False(worst == nil && best != nil, msg) if worst != nil && worst.subPool < 0b11110 { t.Fatalf("pending worst too small %b", worst.subPool) } for _, tx := range pending.best { i := tx.Tx if tx.subPool&NoNonceGaps > 0 { assert.GreaterOrEqual(i.nonce, senders[i.senderID].nonce, msg, i.senderID) } if tx.subPool&EnoughBalance > 0 { //assert.True(tx.SenderHasEnoughBalance) } if tx.subPool&EnoughFeeCapProtocol > 0 { assert.LessOrEqual(calcProtocolBaseFee(pendingBaseFee), tx.Tx.feeCap, msg) } if tx.subPool&EnoughFeeCapBlock > 0 { assert.LessOrEqual(pendingBaseFee, tx.Tx.feeCap, msg) } // side data structures must have all txs assert.True(pool.byNonce.has(tx), msg) _, ok = pool.byHash[string(i.idHash[:])] assert.True(ok) // pools can't have more then 1 tx with same SenderID+Nonce iterateSubPoolUnordered(baseFee, func(mtx2 *metaTx) { tx2 := mtx2.Tx assert.False(tx2.senderID == i.senderID && tx2.nonce == i.nonce, msg) }) iterateSubPoolUnordered(queued, func(mtx2 *metaTx) { tx2 := mtx2.Tx assert.False(tx2.senderID == i.senderID && tx2.nonce == i.nonce, msg) }) } best, worst = baseFee.Best(), baseFee.Worst() assert.False(worst != nil && best == nil, msg) assert.False(worst == nil && best != nil, msg) assert.LessOrEqual(baseFee.Len(), cfg.BaseFeeSubPoolLimit, msg) if worst != nil && worst.subPool < 0b11100 { t.Fatalf("baseFee worst too small %b", worst.subPool) } iterateSubPoolUnordered(baseFee, func(tx *metaTx) { i := tx.Tx if tx.subPool&NoNonceGaps > 0 { assert.GreaterOrEqual(i.nonce, senders[i.senderID].nonce, msg) } if tx.subPool&EnoughBalance != 0 { //assert.True(tx.SenderHasEnoughBalance, msg) } if tx.subPool&EnoughFeeCapProtocol > 0 { assert.LessOrEqual(calcProtocolBaseFee(pendingBaseFee), tx.Tx.feeCap, msg) } if tx.subPool&EnoughFeeCapBlock > 0 { assert.LessOrEqual(pendingBaseFee, tx.Tx.feeCap, msg) } assert.True(pool.byNonce.has(tx), msg) _, ok = pool.byHash[string(i.idHash[:])] assert.True(ok, msg) }) best, worst = queued.Best(), queued.Worst() assert.LessOrEqual(queued.Len(), cfg.QueuedSubPoolLimit) assert.False(worst != nil && best == nil, msg) assert.False(worst == nil && best != nil, msg) if worst != nil && worst.subPool < 0b10000 { t.Fatalf("queued worst too small %b", worst.subPool) } iterateSubPoolUnordered(queued, func(tx *metaTx) { i := tx.Tx if tx.subPool&NoNonceGaps > 0 { assert.GreaterOrEqual(i.nonce, senders[i.senderID].nonce, msg, i.senderID, senders[i.senderID].nonce) } if tx.subPool&EnoughBalance > 0 { //assert.True(tx.SenderHasEnoughBalance, msg) } if tx.subPool&EnoughFeeCapProtocol > 0 { assert.LessOrEqual(calcProtocolBaseFee(pendingBaseFee), tx.Tx.feeCap, msg) } if tx.subPool&EnoughFeeCapBlock > 0 { assert.LessOrEqual(pendingBaseFee, tx.Tx.feeCap, msg) } assert.True(pool.byNonce.has(tx), "%s, %d, %x", msg, tx.Tx.nonce, tx.Tx.idHash) _, ok = pool.byHash[string(i.idHash[:])] assert.True(ok, msg) }) // all txs in side data structures must be in some queue for _, txn := range pool.byHash { require.True(txn.bestIndex >= 0, msg) assert.True(txn.worstIndex >= 0, msg) } for id := range senders { //assert.True(senders[i].byNonce.Len() > 0) pool.byNonce.ascend(id, func(mt *metaTx) bool { require.True(mt.worstIndex >= 0, msg) assert.True(mt.bestIndex >= 0, msg) return true }) } // mined txs must be removed for i := range minedTxs.txs { _, ok = pool.byHash[string(minedTxs.txs[i].idHash[:])] assert.False(ok, msg) } if queued.Len() > 3 { // Less func must be transitive (choose 3 semi-random elements) i := queued.Len() - 1 a, b, c := (*queued.best)[i], (*queued.best)[i-1], (*queued.best)[i-2] if a.Less(b) && b.Less(c) { assert.True(a.Less(c)) } } } checkNotify := func(unwindTxs, minedTxs TxSlots, msg string) { pending, baseFee, queued := pool.pending, pool.baseFee, pool.queued _, _ = baseFee, queued select { case newHashes := <-ch: //assert.Equal(len(txs1.txs), newHashes.Len()) assert.Greater(len(newHashes), 0) for i := 0; i < newHashes.Len(); i++ { foundInUnwind := false foundInMined := false newHash := newHashes.At(i) for j := range unwindTxs.txs { if bytes.Equal(unwindTxs.txs[j].idHash[:], newHash) { foundInUnwind = true break } } for j := range minedTxs.txs { if bytes.Equal(minedTxs.txs[j].idHash[:], newHash) { foundInMined = true break } } assert.True(foundInUnwind, msg) assert.False(foundInMined, msg) } default: // no notifications - means pools must be unchanged or drop some txs pendingHashes := copyHashes(pending) require.Zero(extractNewHashes(pendingHashes, prevHashes).Len()) } prevHashes = copyHashes(pending) _ = prevHashes } //TODO: check that id=>addr and addr=>id mappings have same len tx, err := db.BeginRw(ctx) require.NoError(err) defer tx.Rollback() // start blocks from 0, set empty hash - then kvcache will also work on this h1, h22 := gointerfaces.ConvertHashToH256([32]byte{}), gointerfaces.ConvertHashToH256([32]byte{22}) var txID uint64 _ = coreDB.View(ctx, func(tx kv.Tx) error { txID = tx.ViewID() return nil }) change := &remote.StateChangeBatch{ DatabaseViewID: txID, PendingBlockBaseFee: pendingBaseFee, ChangeBatch: []*remote.StateChange{ {BlockHeight: 0, BlockHash: h1}, }, } for id, sender := range senders { var addr [20]byte copy(addr[:], pool.senders.senderID2Addr[id]) v := make([]byte, EncodeSenderLengthForStorage(sender.nonce, sender.balance)) EncodeSender(sender.nonce, sender.balance, v) change.ChangeBatch[0].Changes = append(change.ChangeBatch[0].Changes, &remote.AccountChange{ Action: remote.Action_UPSERT, Address: gointerfaces.ConvertAddressToH160(addr), Data: v, }) } // go to first fork txs1, txs2, p2pReceived, txs3 := splitDataset(txs) err = pool.OnNewBlock(ctx, change, txs1, TxSlots{}, tx) assert.NoError(err) check(txs1, TxSlots{}, "fork1") checkNotify(txs1, TxSlots{}, "fork1") _, _, _ = p2pReceived, txs2, txs3 change = &remote.StateChangeBatch{ DatabaseViewID: txID, PendingBlockBaseFee: pendingBaseFee, ChangeBatch: []*remote.StateChange{ {BlockHeight: 1, BlockHash: h1}, }, } err = pool.OnNewBlock(ctx, change, TxSlots{}, txs2, tx) check(TxSlots{}, txs2, "fork1 mined") checkNotify(TxSlots{}, txs2, "fork1 mined") // unwind everything and switch to new fork (need unwind mined now) change = &remote.StateChangeBatch{ DatabaseViewID: txID, PendingBlockBaseFee: pendingBaseFee, ChangeBatch: []*remote.StateChange{ {BlockHeight: 0, BlockHash: h1, Direction: remote.Direction_UNWIND}, }, } err = pool.OnNewBlock(ctx, change, txs2, TxSlots{}, tx) assert.NoError(err) check(txs2, TxSlots{}, "fork2") checkNotify(txs2, TxSlots{}, "fork2") change = &remote.StateChangeBatch{ DatabaseViewID: txID, PendingBlockBaseFee: pendingBaseFee, ChangeBatch: []*remote.StateChange{ {BlockHeight: 1, BlockHash: h22}, }, } err = pool.OnNewBlock(ctx, change, TxSlots{}, txs3, tx) assert.NoError(err) check(TxSlots{}, txs3, "fork2 mined") checkNotify(TxSlots{}, txs3, "fork2 mined") // add some remote txs from p2p pool.AddRemoteTxs(ctx, p2pReceived) err = pool.processRemoteTxs(ctx) assert.NoError(err) check(p2pReceived, TxSlots{}, "p2pmsg1") checkNotify(p2pReceived, TxSlots{}, "p2pmsg1") err = pool.flushLocked(tx) // we don't test eviction here, because dedicated test exists require.NoError(err) check(p2pReceived, TxSlots{}, "after_flush") //checkNotify(p2pReceived, TxSlots{}, "after_flush") p2, err := New(ch, coreDB, DefaultConfig, sendersCache, chain.MainnetRules, *u256.N1) assert.NoError(err) p2.senders = pool.senders // senders are not persisted err = coreDB.View(ctx, func(coreTx kv.Tx) error { return p2.fromDB(ctx, tx, coreTx) }) require.NoError(err) for _, txn := range p2.byHash { assert.Nil(txn.Tx.rlp) } //todo: check that after load from db tx linked to same senderAddr check(txs2, TxSlots{}, "fromDB") //checkNotify(txs2, TxSlots{}, "fromDB") //assert.Equal(pool.senders.senderID, p2.senders.senderID) //assert.Equal(pool.senders.blockHeight.Load(), p2.senders.blockHeight.Load()) assert.Equal(pool.pending.Len(), p2.pending.Len()) assert.Equal(pool.baseFee.Len(), p2.baseFee.Len()) require.Equal(pool.queued.Len(), p2.queued.Len()) assert.Equal(pool.pendingBaseFee.Load(), p2.pendingBaseFee.Load()) assert.Equal(pool.protocolBaseFee.Load(), p2.protocolBaseFee.Load()) }) } func bigEndian(n uint64) []byte { num := [8]byte{} binary.BigEndian.PutUint64(num[:], n) return num[:] } func copyHashes(p *PendingPool) (hashes Hashes) { for i := range p.best { hashes = append(hashes, p.best[i].Tx.idHash[:]...) } return hashes } //extractNewHashes - extract from h1 hashes which do not exist in h2 func extractNewHashes(h1, h2 Hashes) (result Hashes) { for i := 0; i < h1.Len(); i++ { found := false for j := 0; j < h2.Len(); j++ { if bytes.Equal(h1.At(i), h2.At(j)) { found = true break } } if !found { result = append(result, h1.At(i)...) } } return result }