// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "sync/atomic" "github.com/holiman/uint256" "github.com/ledgerwatch/erigon-lib/chain" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon/common/u256" "github.com/ledgerwatch/erigon/core/vm/evmtypes" "github.com/ledgerwatch/erigon/crypto" "github.com/ledgerwatch/erigon/params" ) // emptyCodeHash is used by create to ensure deployment is disallowed to already // deployed contract addresses (relevant after the account abstraction). var emptyCodeHash = crypto.Keccak256Hash(nil) func (evm *EVM) precompile(addr libcommon.Address) (PrecompiledContract, bool) { var precompiles map[libcommon.Address]PrecompiledContract switch { case evm.chainRules.IsCancun: precompiles = PrecompiledContractsCancun case evm.chainRules.IsBerlin: precompiles = PrecompiledContractsBerlin case evm.chainRules.IsIstanbul: precompiles = PrecompiledContractsIstanbul case evm.chainRules.IsByzantium: precompiles = PrecompiledContractsByzantium default: precompiles = PrecompiledContractsHomestead } p, ok := precompiles[addr] return p, ok } // run runs the given contract and takes care of running precompiles with a fallback to the byte code interpreter. func run(evm *EVM, contract *Contract, input []byte, readOnly bool) ([]byte, error) { return evm.interpreter.Run(contract, input, readOnly) } // EVM is the Ethereum Virtual Machine base object and provides // the necessary tools to run a contract on the given state with // the provided context. It should be noted that any error // generated through any of the calls should be considered a // revert-state-and-consume-all-gas operation, no checks on // specific errors should ever be performed. The interpreter makes // sure that any errors generated are to be considered faulty code. // // The EVM should never be reused and is not thread safe. type EVM struct { // Context provides auxiliary blockchain related information context evmtypes.BlockContext txContext evmtypes.TxContext // IntraBlockState gives access to the underlying state intraBlockState evmtypes.IntraBlockState // chainConfig contains information about the current chain chainConfig *chain.Config // chain rules contains the chain rules for the current epoch chainRules *chain.Rules // virtual machine configuration options used to initialise the // evm. config Config // global (to this context) ethereum virtual machine // used throughout the execution of the tx. interpreter Interpreter // abort is used to abort the EVM calling operations // NOTE: must be set atomically abort int32 // callGasTemp holds the gas available for the current call. This is needed because the // available gas is calculated in gasCall* according to the 63/64 rule and later // applied in opCall*. callGasTemp uint64 } // NewEVM returns a new EVM. The returned EVM is not thread safe and should // only ever be used *once*. func NewEVM(blockCtx evmtypes.BlockContext, txCtx evmtypes.TxContext, state evmtypes.IntraBlockState, chainConfig *chain.Config, vmConfig Config) *EVM { evm := &EVM{ context: blockCtx, txContext: txCtx, intraBlockState: state, config: vmConfig, chainConfig: chainConfig, chainRules: chainConfig.Rules(blockCtx.BlockNumber, blockCtx.Time), } evm.interpreter = NewEVMInterpreter(evm, vmConfig) return evm } // Reset resets the EVM with a new transaction context.Reset // This is not threadsafe and should only be done very cautiously. func (evm *EVM) Reset(txCtx evmtypes.TxContext, ibs evmtypes.IntraBlockState) { evm.txContext = txCtx evm.intraBlockState = ibs // ensure the evm is reset to be used again atomic.StoreInt32(&evm.abort, 0) } func (evm *EVM) ResetBetweenBlocks(blockCtx evmtypes.BlockContext, txCtx evmtypes.TxContext, ibs evmtypes.IntraBlockState, vmConfig Config, chainRules *chain.Rules) { evm.context = blockCtx evm.txContext = txCtx evm.intraBlockState = ibs evm.config = vmConfig evm.chainRules = chainRules evm.interpreter = NewEVMInterpreter(evm, vmConfig) // ensure the evm is reset to be used again atomic.StoreInt32(&evm.abort, 0) } // Cancel cancels any running EVM operation. This may be called concurrently and // it's safe to be called multiple times. func (evm *EVM) Cancel() { atomic.StoreInt32(&evm.abort, 1) } // Cancelled returns true if Cancel has been called func (evm *EVM) Cancelled() bool { return atomic.LoadInt32(&evm.abort) == 1 } // CallGasTemp returns the callGasTemp for the EVM func (evm *EVM) CallGasTemp() uint64 { return evm.callGasTemp } // SetCallGasTemp sets the callGasTemp for the EVM func (evm *EVM) SetCallGasTemp(gas uint64) { evm.callGasTemp = gas } // Interpreter returns the current interpreter func (evm *EVM) Interpreter() Interpreter { return evm.interpreter } func (evm *EVM) call(typ OpCode, caller ContractRef, addr libcommon.Address, input []byte, gas uint64, value *uint256.Int, bailout bool) (ret []byte, leftOverGas uint64, err error) { depth := evm.interpreter.Depth() if evm.config.NoRecursion && depth > 0 { return nil, gas, nil } // Fail if we're trying to execute above the call depth limit if depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } if typ == CALL || typ == CALLCODE { // Fail if we're trying to transfer more than the available balance if !value.IsZero() && !evm.context.CanTransfer(evm.intraBlockState, caller.Address(), value) { if !bailout { return nil, gas, ErrInsufficientBalance } } } p, isPrecompile := evm.precompile(addr) var code []byte if !isPrecompile { code = evm.intraBlockState.GetCode(addr) } snapshot := evm.intraBlockState.Snapshot() if typ == CALL { if !evm.intraBlockState.Exist(addr) { if !isPrecompile && evm.chainRules.IsSpuriousDragon && value.IsZero() { if evm.config.Debug { v := value if typ == STATICCALL { v = nil } // Calling a non existing account, don't do anything, but ping the tracer if depth == 0 { evm.config.Tracer.CaptureStart(evm, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code) evm.config.Tracer.CaptureEnd(ret, 0, nil) } else { evm.config.Tracer.CaptureEnter(typ, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code) evm.config.Tracer.CaptureExit(ret, 0, nil) } } return nil, gas, nil } evm.intraBlockState.CreateAccount(addr, false) } evm.context.Transfer(evm.intraBlockState, caller.Address(), addr, value, bailout) } else if typ == STATICCALL { // We do an AddBalance of zero here, just in order to trigger a touch. // This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium, // but is the correct thing to do and matters on other networks, in tests, and potential // future scenarios evm.intraBlockState.AddBalance(addr, u256.Num0) } if evm.config.Debug { v := value if typ == STATICCALL { v = nil } if depth == 0 { evm.config.Tracer.CaptureStart(evm, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code) defer func(startGas uint64) { // Lazy evaluation of the parameters evm.config.Tracer.CaptureEnd(ret, startGas-gas, err) }(gas) } else { evm.config.Tracer.CaptureEnter(typ, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code) defer func(startGas uint64) { // Lazy evaluation of the parameters evm.config.Tracer.CaptureExit(ret, startGas-gas, err) }(gas) } } // It is allowed to call precompiles, even via delegatecall if isPrecompile { ret, gas, err = RunPrecompiledContract(p, input, gas) } else if len(code) == 0 { // If the account has no code, we can abort here // The depth-check is already done, and precompiles handled above ret, err = nil, nil // gas is unchanged } else { // At this point, we use a copy of address. If we don't, the go compiler will // leak the 'contract' to the outer scope, and make allocation for 'contract' // even if the actual execution ends on RunPrecompiled above. addrCopy := addr // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. codeHash := evm.intraBlockState.GetCodeHash(addrCopy) var contract *Contract if typ == CALLCODE { contract = NewContract(caller, caller.Address(), value, gas, evm.config.SkipAnalysis) } else if typ == DELEGATECALL { contract = NewContract(caller, caller.Address(), value, gas, evm.config.SkipAnalysis).AsDelegate() } else { contract = NewContract(caller, addrCopy, value, gas, evm.config.SkipAnalysis) } contract.SetCallCode(&addrCopy, codeHash, code) readOnly := false if typ == STATICCALL { readOnly = true } ret, err = run(evm, contract, input, readOnly) gas = contract.Gas } // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in Homestead this also counts for code storage gas errors. if err != nil || evm.config.RestoreState { evm.intraBlockState.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { gas = 0 } // TODO: consider clearing up unused snapshots: //} else { // evm.StateDB.DiscardSnapshot(snapshot) } return ret, gas, err } // Call executes the contract associated with the addr with the given input as // parameters. It also handles any necessary value transfer required and takes // the necessary steps to create accounts and reverses the state in case of an // execution error or failed value transfer. func (evm *EVM) Call(caller ContractRef, addr libcommon.Address, input []byte, gas uint64, value *uint256.Int, bailout bool) (ret []byte, leftOverGas uint64, err error) { return evm.call(CALL, caller, addr, input, gas, value, bailout) } // CallCode executes the contract associated with the addr with the given input // as parameters. It also handles any necessary value transfer required and takes // the necessary steps to create accounts and reverses the state in case of an // execution error or failed value transfer. // // CallCode differs from Call in the sense that it executes the given address' // code with the caller as context. func (evm *EVM) CallCode(caller ContractRef, addr libcommon.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) { return evm.call(CALLCODE, caller, addr, input, gas, value, false) } // DelegateCall executes the contract associated with the addr with the given input // as parameters. It reverses the state in case of an execution error. // // DelegateCall differs from CallCode in the sense that it executes the given address' // code with the caller as context and the caller is set to the caller of the caller. func (evm *EVM) DelegateCall(caller ContractRef, addr libcommon.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) { return evm.call(DELEGATECALL, caller, addr, input, gas, nil, false) } // StaticCall executes the contract associated with the addr with the given input // as parameters while disallowing any modifications to the state during the call. // Opcodes that attempt to perform such modifications will result in exceptions // instead of performing the modifications. func (evm *EVM) StaticCall(caller ContractRef, addr libcommon.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) { return evm.call(STATICCALL, caller, addr, input, gas, new(uint256.Int), false) } type codeAndHash struct { code []byte hash libcommon.Hash } func (c *codeAndHash) Hash() libcommon.Hash { if c.hash == (libcommon.Hash{}) { c.hash = crypto.Keccak256Hash(c.code) } return c.hash } // create creates a new contract using code as deployment code. func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *uint256.Int, address libcommon.Address, typ OpCode, incrementNonce bool) ([]byte, libcommon.Address, uint64, error) { var ret []byte var err error var gasConsumption uint64 depth := evm.interpreter.Depth() if evm.config.Debug { if depth == 0 { evm.config.Tracer.CaptureStart(evm, caller.Address(), address, false /* precompile */, true /* create */, codeAndHash.code, gas, value, nil) defer func() { evm.config.Tracer.CaptureEnd(ret, gasConsumption, err) }() } else { evm.config.Tracer.CaptureEnter(typ, caller.Address(), address, false /* precompile */, true /* create */, codeAndHash.code, gas, value, nil) defer func() { evm.config.Tracer.CaptureExit(ret, gasConsumption, err) }() } } // Depth check execution. Fail if we're trying to execute above the // limit. if depth > int(params.CallCreateDepth) { err = ErrDepth return nil, libcommon.Address{}, gas, err } if !evm.context.CanTransfer(evm.intraBlockState, caller.Address(), value) { err = ErrInsufficientBalance return nil, libcommon.Address{}, gas, err } if incrementNonce { nonce := evm.intraBlockState.GetNonce(caller.Address()) if nonce+1 < nonce { err = ErrNonceUintOverflow return nil, libcommon.Address{}, gas, err } evm.intraBlockState.SetNonce(caller.Address(), nonce+1) } // We add this to the access list _before_ taking a snapshot. Even if the creation fails, // the access-list change should not be rolled back if evm.chainRules.IsBerlin { evm.intraBlockState.AddAddressToAccessList(address) } // Ensure there's no existing contract already at the designated address contractHash := evm.intraBlockState.GetCodeHash(address) if evm.intraBlockState.GetNonce(address) != 0 || (contractHash != (libcommon.Hash{}) && contractHash != emptyCodeHash) { err = ErrContractAddressCollision return nil, libcommon.Address{}, 0, err } // Create a new account on the state snapshot := evm.intraBlockState.Snapshot() evm.intraBlockState.CreateAccount(address, true) if evm.chainRules.IsSpuriousDragon { evm.intraBlockState.SetNonce(address, 1) } evm.context.Transfer(evm.intraBlockState, caller.Address(), address, value, false /* bailout */) // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. contract := NewContract(caller, address, value, gas, evm.config.SkipAnalysis) contract.SetCodeOptionalHash(&address, codeAndHash) if evm.config.NoRecursion && depth > 0 { return nil, address, gas, nil } ret, err = run(evm, contract, nil, false) // EIP-170: Contract code size limit if err == nil && evm.chainRules.IsSpuriousDragon && len(ret) > params.MaxCodeSize { // Gnosis Chain prior to Shanghai didn't have EIP-170 enabled, // but EIP-3860 (part of Shanghai) requires EIP-170. if !evm.chainRules.IsAura || evm.config.HasEip3860(evm.chainRules) { err = ErrMaxCodeSizeExceeded } } // Reject code starting with 0xEF if EIP-3541 is enabled. if err == nil && evm.chainRules.IsLondon && len(ret) >= 1 && ret[0] == 0xEF { err = ErrInvalidCode } // if the contract creation ran successfully and no errors were returned // calculate the gas required to store the code. If the code could not // be stored due to not enough gas set an error and let it be handled // by the error checking condition below. if err == nil { createDataGas := uint64(len(ret)) * params.CreateDataGas if contract.UseGas(createDataGas) { evm.intraBlockState.SetCode(address, ret) } else if evm.chainRules.IsHomestead { err = ErrCodeStoreOutOfGas } } // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in homestead this also counts for code storage gas errors. if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) { evm.intraBlockState.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas) } } // calculate gasConsumption for deferred captures gasConsumption = gas - contract.Gas return ret, address, contract.Gas, err } // Create creates a new contract using code as deployment code. // DESCRIBED: docs/programmers_guide/guide.md#nonce func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int) (ret []byte, contractAddr libcommon.Address, leftOverGas uint64, err error) { contractAddr = crypto.CreateAddress(caller.Address(), evm.intraBlockState.GetNonce(caller.Address())) return evm.create(caller, &codeAndHash{code: code}, gas, endowment, contractAddr, CREATE, true /* incrementNonce */) } // Create2 creates a new contract using code as deployment code. // // The different between Create2 with Create is Create2 uses keccak256(0xff ++ msg.sender ++ salt ++ keccak256(init_code))[12:] // instead of the usual sender-and-nonce-hash as the address where the contract is initialized at. // DESCRIBED: docs/programmers_guide/guide.md#nonce func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, salt *uint256.Int) (ret []byte, contractAddr libcommon.Address, leftOverGas uint64, err error) { codeAndHash := &codeAndHash{code: code} contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes()) return evm.create(caller, codeAndHash, gas, endowment, contractAddr, CREATE2, true /* incrementNonce */) } // SysCreate is a special (system) contract creation methods for genesis constructors. // Unlike the normal Create & Create2, it doesn't increment caller's nonce. func (evm *EVM) SysCreate(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, contractAddr libcommon.Address) (ret []byte, leftOverGas uint64, err error) { ret, _, leftOverGas, err = evm.create(caller, &codeAndHash{code: code}, gas, endowment, contractAddr, CREATE, false /* incrementNonce */) return } // ChainConfig returns the environment's chain configuration func (evm *EVM) Config() Config { return evm.config } // ChainConfig returns the environment's chain configuration func (evm *EVM) ChainConfig() *chain.Config { return evm.chainConfig } // ChainRules returns the environment's chain rules func (evm *EVM) ChainRules() *chain.Rules { return evm.chainRules } // Context returns the EVM's BlockContext func (evm *EVM) Context() evmtypes.BlockContext { return evm.context } // TxContext returns the EVM's TxContext func (evm *EVM) TxContext() evmtypes.TxContext { return evm.txContext } // IntraBlockState returns the EVM's IntraBlockState func (evm *EVM) IntraBlockState() evmtypes.IntraBlockState { return evm.intraBlockState }