// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "errors" "fmt" "math/big" "sync" "time" mapset "github.com/deckarep/golang-set" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/core/forkid" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/p2p" "github.com/ledgerwatch/turbo-geth/rlp" ) var ( errClosed = errors.New("peer set is closed") errAlreadyRegistered = errors.New("peer is already registered") errNotRegistered = errors.New("peer is not registered") ) const ( maxKnownTxs = 32768 // Maximum transactions hashes to keep in the known list (prevent DOS) maxKnownBlocks = 1024 // Maximum block hashes to keep in the known list (prevent DOS) // maxQueuedTxs is the maximum number of transactions to queue up before dropping // older broadcasts. maxQueuedTxs = 4096 // maxQueuedTxAnns is the maximum number of transaction announcements to queue up // before dropping older announcements. maxQueuedTxAnns = 4096 // maxQueuedBlocks is the maximum number of block propagations to queue up before // dropping broadcasts. There's not much point in queueing stale blocks, so a few // that might cover uncles should be enough. maxQueuedBlocks = 4 // maxQueuedBlockAnns is the maximum number of block announcements to queue up before // dropping broadcasts. Similarly to block propagations, there's no point to queue // above some healthy uncle limit, so use that. maxQueuedBlockAnns = 4 handshakeTimeout = 5 * time.Second ) // max is a helper function which returns the larger of the two given integers. // nolint:unparam func max(a, b int) int { if a > b { return a } return b } // PeerInfo represents a short summary of the Ethereum sub-protocol metadata known // about a connected peer. type PeerInfo struct { Version int `json:"version"` // Ethereum protocol version negotiated Number uint64 `json:"difficulty"` // Best block number Head string `json:"head"` // SHA3 hash of the peer's best owned block } // propEvent is a block propagation, waiting for its turn in the broadcast queue. type propEvent struct { block *types.Block td *big.Int } type peer struct { id string *p2p.Peer rw p2p.MsgReadWriter version int // Protocol version negotiated syncDrop *time.Timer // Timed connection dropper if sync progress isn't validated in time headHash common.Hash headNumber uint64 lock sync.RWMutex knownBlocks mapset.Set // Set of block hashes known to be known by this peer queuedBlocks chan *propEvent // Queue of blocks to broadcast to the peer queuedBlockAnns chan *types.Block // Queue of blocks to announce to the peer knownTxs mapset.Set // Set of transaction hashes known to be known by this peer txBroadcast chan []common.Hash // Channel used to queue transaction propagation requests txAnnounce chan []common.Hash // Channel used to queue transaction announcement requests getPooledTx func(common.Hash) *types.Transaction // Callback used to retrieve transaction from txpool term chan struct{} // Termination channel to stop the broadcaster HandshakeOrderMux sync.Mutex // This mutex enforces the order of operations when registering new peer on eth65+ } func newPeer(version int, p *p2p.Peer, rw p2p.MsgReadWriter, getPooledTx func(hash common.Hash) *types.Transaction) *peer { return &peer{ Peer: p, rw: rw, version: version, id: fmt.Sprintf("%x", p.ID().Bytes()[:8]), knownTxs: mapset.NewSet(), knownBlocks: mapset.NewSet(), queuedBlocks: make(chan *propEvent, maxQueuedBlocks), queuedBlockAnns: make(chan *types.Block, maxQueuedBlockAnns), txBroadcast: make(chan []common.Hash), txAnnounce: make(chan []common.Hash), getPooledTx: getPooledTx, term: make(chan struct{}), } } // broadcastBlocks is a write loop that multiplexes blocks and block accouncements // to the remote peer. The goal is to have an async writer that does not lock up // node internals and at the same time rate limits queued data. func (p *peer) broadcastBlocks() { for { select { case prop := <-p.queuedBlocks: if err := p.SendNewBlock(prop.block, prop.td); err != nil { return } p.Log().Trace("Propagated block", "number", prop.block.Number(), "hash", prop.block.Hash(), "td", prop.td) case block := <-p.queuedBlockAnns: if err := p.SendNewBlockHashes([]common.Hash{block.Hash()}, []uint64{block.NumberU64()}); err != nil { return } p.Log().Trace("Announced block", "number", block.Number(), "hash", block.Hash()) case <-p.term: return } } } // broadcastTransactions is a write loop that schedules transaction broadcasts // to the remote peer. The goal is to have an async writer that does not lock up // node internals and at the same time rate limits queued data. func (p *peer) broadcastTransactions() { var ( queue []common.Hash // Queue of hashes to broadcast as full transactions done chan struct{} // Non-nil if background broadcaster is running fail = make(chan error, 1) // Channel used to receive network error ) for { // If there's no in-flight broadcast running, check if a new one is needed if done == nil && len(queue) > 0 { // Pile transaction until we reach our allowed network limit var ( hashes []common.Hash txs []*types.Transaction size common.StorageSize ) for i := 0; i < len(queue) && size < txsyncPackSize; i++ { if tx := p.getPooledTx(queue[i]); tx != nil { txs = append(txs, tx) size += tx.Size() } hashes = append(hashes, queue[i]) } queue = queue[:copy(queue, queue[len(hashes):])] // If there's anything available to transfer, fire up an async writer if len(txs) > 0 { done = make(chan struct{}) go func() { if err := p.sendTransactions(txs); err != nil { fail <- err return } close(done) p.Log().Trace("Sent transactions", "count", len(txs)) }() } } // Transfer goroutine may or may not have been started, listen for events select { case hashes := <-p.txBroadcast: // New batch of transactions to be broadcast, queue them (with cap) queue = append(queue, hashes...) if len(queue) > maxQueuedTxs { // Fancy copy and resize to ensure buffer doesn't grow indefinitely queue = queue[:copy(queue, queue[len(queue)-maxQueuedTxs:])] } case <-done: done = nil case <-fail: return case <-p.term: return } } } // announceTransactions is a write loop that schedules transaction broadcasts // to the remote peer. The goal is to have an async writer that does not lock up // node internals and at the same time rate limits queued data. func (p *peer) announceTransactions() { var ( queue []common.Hash // Queue of hashes to announce as transaction stubs done chan struct{} // Non-nil if background announcer is running fail = make(chan error, 1) // Channel used to receive network error ) // Making sure that we don't announce transactions too early. // It this lock is set, it means that we are in process of exchanging latest block headers. p.HandshakeOrderMux.Lock() // this causes a false-positive SA2001: empty critical section, so we intentionally ignore it //nolint: staticcheck p.HandshakeOrderMux.Unlock() for { // If there's no in-flight announce running, check if a new one is needed if done == nil && len(queue) > 0 { // Pile transaction hashes until we reach our allowed network limit var ( hashes []common.Hash pending []common.Hash size common.StorageSize ) for i := 0; i < len(queue) && size < txsyncPackSize; i++ { if p.getPooledTx(queue[i]) != nil { pending = append(pending, queue[i]) size += common.HashLength } hashes = append(hashes, queue[i]) } queue = queue[:copy(queue, queue[len(hashes):])] // If there's anything available to transfer, fire up an async writer if len(pending) > 0 { done = make(chan struct{}) go func() { if err := p.sendPooledTransactionHashes(pending); err != nil { fail <- err return } close(done) p.Log().Trace("Sent transaction announcements", "count", len(pending)) }() } } // Transfer goroutine may or may not have been started, listen for events select { case hashes := <-p.txAnnounce: // New batch of transactions to be broadcast, queue them (with cap) queue = append(queue, hashes...) if len(queue) > maxQueuedTxAnns { // Fancy copy and resize to ensure buffer doesn't grow indefinitely queue = queue[:copy(queue, queue[len(queue)-maxQueuedTxs:])] } case <-done: done = nil case <-fail: return case <-p.term: return } } } // close signals the broadcast goroutine to terminate. func (p *peer) close() { close(p.term) } // Info gathers and returns a collection of metadata known about a peer. func (p *peer) Info() *PeerInfo { hash, number := p.Head() return &PeerInfo{ Version: p.version, Number: number, Head: hash.Hex(), } } // Head retrieves a copy of the current head hash and total difficulty of the // peer. func (p *peer) Head() (hash common.Hash, number uint64) { p.lock.RLock() defer p.lock.RUnlock() copy(hash[:], p.headHash[:]) return hash, p.headNumber } // SetHead updates the head hash and total difficulty of the peer. func (p *peer) SetHead(hash common.Hash, number uint64) { p.lock.Lock() defer p.lock.Unlock() copy(p.headHash[:], hash[:]) p.headNumber = number } // MarkBlock marks a block as known for the peer, ensuring that the block will // never be propagated to this particular peer. func (p *peer) MarkBlock(hash common.Hash) { // If we reached the memory allowance, drop a previously known block hash for p.knownBlocks.Cardinality() >= maxKnownBlocks { p.knownBlocks.Pop() } p.knownBlocks.Add(hash) } // MarkTransaction marks a transaction as known for the peer, ensuring that it // will never be propagated to this particular peer. func (p *peer) MarkTransaction(hash common.Hash) { // If we reached the memory allowance, drop a previously known transaction hash for p.knownTxs.Cardinality() >= maxKnownTxs { p.knownTxs.Pop() } p.knownTxs.Add(hash) } // SendTransactions64 sends transactions to the peer and includes the hashes // in its transaction hash set for future reference. // // This method is legacy support for initial transaction exchange in eth/64 and // prior. For eth/65 and higher use SendPooledTransactionHashes. func (p *peer) SendTransactions64(txs types.Transactions) error { return p.sendTransactions(txs) } // sendTransactions sends transactions to the peer and includes the hashes // in its transaction hash set for future reference. // // This method is a helper used by the async transaction sender. Don't call it // directly as the queueing (memory) and transmission (bandwidth) costs should // not be managed directly. func (p *peer) sendTransactions(txs types.Transactions) error { // Mark all the transactions as known, but ensure we don't overflow our limits for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(txs)) { p.knownTxs.Pop() } for _, tx := range txs { p.knownTxs.Add(tx.Hash()) } return p2p.Send(p.rw, TransactionMsg, txs) } // AsyncSendTransactions queues a list of transactions (by hash) to eventually // propagate to a remote peer. The number of pending sends are capped (new ones // will force old sends to be dropped) func (p *peer) AsyncSendTransactions(hashes []common.Hash) { select { case p.txBroadcast <- hashes: // Mark all the transactions as known, but ensure we don't overflow our limits for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) { p.knownTxs.Pop() } for _, hash := range hashes { p.knownTxs.Add(hash) } case <-p.term: p.Log().Debug("Dropping transaction propagation", "count", len(hashes)) } } // sendPooledTransactionHashes sends transaction hashes to the peer and includes // them in its transaction hash set for future reference. // // This method is a helper used by the async transaction announcer. Don't call it // directly as the queueing (memory) and transmission (bandwidth) costs should // not be managed directly. func (p *peer) sendPooledTransactionHashes(hashes []common.Hash) error { // Mark all the transactions as known, but ensure we don't overflow our limits for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) { p.knownTxs.Pop() } for _, hash := range hashes { p.knownTxs.Add(hash) } return p2p.Send(p.rw, NewPooledTransactionHashesMsg, hashes) } // AsyncSendPooledTransactionHashes queues a list of transactions hashes to eventually // announce to a remote peer. The number of pending sends are capped (new ones // will force old sends to be dropped) func (p *peer) AsyncSendPooledTransactionHashes(hashes []common.Hash) { select { case p.txAnnounce <- hashes: // Mark all the transactions as known, but ensure we don't overflow our limits for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) { p.knownTxs.Pop() } for _, hash := range hashes { p.knownTxs.Add(hash) } case <-p.term: p.Log().Debug("Dropping transaction announcement", "count", len(hashes)) } } // SendPooledTransactionsRLP sends requested transactions to the peer and adds the // hashes in its transaction hash set for future reference. // // Note, the method assumes the hashes are correct and correspond to the list of // transactions being sent. func (p *peer) SendPooledTransactionsRLP(hashes []common.Hash, txs []rlp.RawValue) error { // Mark all the transactions as known, but ensure we don't overflow our limits for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) { p.knownTxs.Pop() } for _, hash := range hashes { p.knownTxs.Add(hash) } return p2p.Send(p.rw, PooledTransactionsMsg, txs) } // SendNewBlockHashes announces the availability of a number of blocks through // a hash notification. func (p *peer) SendNewBlockHashes(hashes []common.Hash, numbers []uint64) error { // Mark all the block hashes as known, but ensure we don't overflow our limits for p.knownBlocks.Cardinality() > max(0, maxKnownBlocks-len(hashes)) { p.knownBlocks.Pop() } for _, hash := range hashes { p.knownBlocks.Add(hash) } request := make(newBlockHashesData, len(hashes)) for i := 0; i < len(hashes); i++ { request[i].Hash = hashes[i] request[i].Number = numbers[i] } return p2p.Send(p.rw, NewBlockHashesMsg, request) } // AsyncSendNewBlockHash queues the availability of a block for propagation to a // remote peer. If the peer's broadcast queue is full, the event is silently // dropped. func (p *peer) AsyncSendNewBlockHash(block *types.Block) { select { case p.queuedBlockAnns <- block: // Mark all the block hash as known, but ensure we don't overflow our limits for p.knownBlocks.Cardinality() >= maxKnownBlocks { p.knownBlocks.Pop() } p.knownBlocks.Add(block.Hash()) default: p.Log().Debug("Dropping block announcement", "number", block.NumberU64(), "hash", block.Hash()) } } // SendNewBlock propagates an entire block to a remote peer. func (p *peer) SendNewBlock(block *types.Block, td *big.Int) error { // Mark all the block hash as known, but ensure we don't overflow our limits for p.knownBlocks.Cardinality() >= maxKnownBlocks { p.knownBlocks.Pop() } p.knownBlocks.Add(block.Hash()) return p2p.Send(p.rw, NewBlockMsg, []interface{}{block, td}) } // AsyncSendNewBlock queues an entire block for propagation to a remote peer. If // the peer's broadcast queue is full, the event is silently dropped. func (p *peer) AsyncSendNewBlock(block *types.Block, td *big.Int) { select { case p.queuedBlocks <- &propEvent{block: block, td: td}: // Mark all the block hash as known, but ensure we don't overflow our limits for p.knownBlocks.Cardinality() >= maxKnownBlocks { p.knownBlocks.Pop() } p.knownBlocks.Add(block.Hash()) default: p.Log().Debug("Dropping block propagation", "number", block.NumberU64(), "hash", block.Hash()) } } // SendBlockHeaders sends a batch of block headers to the remote peer. func (p *peer) SendBlockHeaders(headers []*types.Header) error { return p2p.Send(p.rw, BlockHeadersMsg, headers) } // SendBlockBodies sends a batch of block contents to the remote peer. func (p *peer) SendBlockBodies(bodies []*blockBody) error { return p2p.Send(p.rw, BlockBodiesMsg, blockBodiesData(bodies)) } // SendBlockBodiesRLP sends a batch of block contents to the remote peer from // an already RLP encoded format. func (p *peer) SendBlockBodiesRLP(bodies []rlp.RawValue) error { return p2p.Send(p.rw, BlockBodiesMsg, bodies) } // SendNodeData sends a batch of arbitrary internal data, corresponding to the // hashes requested. func (p *peer) SendNodeData(data [][]byte) error { return p2p.Send(p.rw, NodeDataMsg, data) } // SendReceiptsRLP sends a batch of transaction receipts, corresponding to the // ones requested from an already RLP encoded format. func (p *peer) SendReceiptsRLP(receipts []rlp.RawValue) error { return p2p.Send(p.rw, ReceiptsMsg, receipts) } // RequestOneHeader is a wrapper around the header query functions to fetch a // single header. It is used solely by the fetcher. func (p *peer) RequestOneHeader(hash common.Hash) error { p.Log().Debug("Fetching single header", "hash", hash) return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false}) } // RequestHeadersByHash fetches a batch of blocks' headers corresponding to the // specified header query, based on the hash of an origin block. func (p *peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error { p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse) return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse}) } // RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the // specified header query, based on the number of an origin block. func (p *peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error { p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse) return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse}) } // RequestBodies fetches a batch of blocks' bodies corresponding to the hashes // specified. func (p *peer) RequestBodies(hashes []common.Hash) error { p.Log().Debug("Fetching batch of block bodies", "count", len(hashes)) return p2p.Send(p.rw, GetBlockBodiesMsg, hashes) } // RequestNodeData fetches a batch of arbitrary data from a node's known state // data, corresponding to the specified hashes. func (p *peer) RequestNodeData(hashes []common.Hash) error { p.Log().Debug("Fetching batch of state data", "count", len(hashes)) return p2p.Send(p.rw, GetNodeDataMsg, hashes) } // RequestReceipts fetches a batch of transaction receipts from a remote node. func (p *peer) RequestReceipts(hashes []common.Hash) error { p.Log().Debug("Fetching batch of receipts", "count", len(hashes)) return p2p.Send(p.rw, GetReceiptsMsg, hashes) } // RequestTxs fetches a batch of transactions from a remote node. func (p *peer) RequestTxs(hashes []common.Hash) error { p.Log().Debug("Fetching batch of transactions", "count", len(hashes)) return p2p.Send(p.rw, GetPooledTransactionsMsg, hashes) } // Handshake executes the eth protocol handshake, negotiating version number, // network IDs, difficulties, head and genesis blocks. func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash, forkID forkid.ID, forkFilter forkid.Filter) error { // Send out own handshake in a new thread errc := make(chan error, 2) var ( status statusData // safe to read after two values have been received from errc ) go func() { switch { case p.version >= eth64: errc <- p2p.Send(p.rw, StatusMsg, &statusData{ ProtocolVersion: uint32(p.version), NetworkID: network, TD: td, Head: head, Genesis: genesis, ForkID: forkID, }) default: panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version)) } }() go func() { switch { case p.version >= eth64: errc <- p.readStatus(network, &status, genesis, forkFilter) default: panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version)) } }() timeout := time.NewTimer(handshakeTimeout) defer timeout.Stop() for i := 0; i < 2; i++ { select { case err := <-errc: if err != nil { return err } case <-timeout.C: return p2p.DiscReadTimeout } } switch { case p.version >= eth64: p.headHash = status.Head default: panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version)) } return nil } func (p *peer) readStatus(network uint64, status *statusData, genesis common.Hash, forkFilter forkid.Filter) error { msg, err := p.rw.ReadMsg() if err != nil { return err } if msg.Code != StatusMsg { return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg) } if msg.Size > ProtocolMaxMsgSize { return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize) } // Decode the handshake and make sure everything matches if err := msg.Decode(&status); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } if status.NetworkID != network { return errResp(ErrNetworkIDMismatch, "%d (!= %d)", status.NetworkID, network) } if int(status.ProtocolVersion) != p.version { return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version) } if status.Genesis != genesis { return errResp(ErrGenesisMismatch, "%x (!= %x)", status.Genesis, genesis) } if err := forkFilter(status.ForkID); err != nil { return errResp(ErrForkIDRejected, "%v", err) } return nil } // String implements fmt.Stringer. func (p *peer) String() string { return fmt.Sprintf("Peer %s [%s]", p.id, fmt.Sprintf("eth/%2d", p.version), ) } // peerSet represents the collection of active peers currently participating in // the Ethereum sub-protocol. type peerSet struct { peers map[string]*peer lock sync.RWMutex closed bool } // newPeerSet creates a new peer set to track the active participants. func newPeerSet() *peerSet { return &peerSet{ peers: make(map[string]*peer), } } // Register injects a new peer into the working set, or returns an error if the // peer is already known. If a new peer it registered, its broadcast loop is also // started. func (ps *peerSet) Register(p *peer) error { ps.lock.Lock() defer ps.lock.Unlock() if ps.closed { return errClosed } if _, ok := ps.peers[p.id]; ok { return errAlreadyRegistered } ps.peers[p.id] = p go p.broadcastBlocks() go p.broadcastTransactions() if p.version >= eth65 { go p.announceTransactions() } return nil } // Unregister removes a remote peer from the active set, disabling any further // actions to/from that particular entity. func (ps *peerSet) Unregister(id string) error { ps.lock.Lock() defer ps.lock.Unlock() p, ok := ps.peers[id] if !ok { return errNotRegistered } delete(ps.peers, id) p.close() return nil } // Peer retrieves the registered peer with the given id. func (ps *peerSet) Peer(id string) *peer { ps.lock.RLock() defer ps.lock.RUnlock() return ps.peers[id] } // Len returns if the current number of peers in the set. func (ps *peerSet) Len() int { ps.lock.RLock() defer ps.lock.RUnlock() return len(ps.peers) } // PeersWithoutBlock retrieves a list of peers that do not have a given block in // their set of known hashes. func (ps *peerSet) PeersWithoutBlock(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownBlocks.Contains(hash) { list = append(list, p) } } return list } // PeersWithoutTx retrieves a list of peers that do not have a given transaction // in their set of known hashes. func (ps *peerSet) PeersWithoutTx(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownTxs.Contains(hash) { list = append(list, p) } } return list } // BestPeer retrieves the known peer with the currently highest total difficulty. func (ps *peerSet) BestPeer() *peer { ps.lock.RLock() defer ps.lock.RUnlock() var ( bestPeer *peer bestNumber uint64 ) for _, p := range ps.peers { if _, number := p.Head(); bestPeer == nil || number > bestNumber { bestPeer, bestNumber = p, number } } return bestPeer } // Close disconnects all peers. // No new peers can be registered after Close has returned. func (ps *peerSet) Close() { ps.lock.Lock() defer ps.lock.Unlock() for _, p := range ps.peers { p.Disconnect(p2p.DiscQuitting) } ps.closed = true }