// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "encoding/binary" "fmt" "math/big" "reflect" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon/common" ) var ( // MaxUint256 is the maximum value that can be represented by a uint256. MaxUint256 = new(big.Int).Sub(new(big.Int).Lsh(common.Big1, 256), common.Big1) // MaxInt256 is the maximum value that can be represented by a int256. MaxInt256 = new(big.Int).Sub(new(big.Int).Lsh(common.Big1, 255), common.Big1) ) // ReadInteger reads the integer based on its kind and returns the appropriate value. func ReadInteger(typ Type, b []byte) interface{} { if typ.T == UintTy { switch typ.Size { case 8: return b[len(b)-1] case 16: return binary.BigEndian.Uint16(b[len(b)-2:]) case 32: return binary.BigEndian.Uint32(b[len(b)-4:]) case 64: return binary.BigEndian.Uint64(b[len(b)-8:]) default: // the only case left for unsigned integer is uint256. return new(big.Int).SetBytes(b) } } switch typ.Size { case 8: return int8(b[len(b)-1]) case 16: return int16(binary.BigEndian.Uint16(b[len(b)-2:])) case 32: return int32(binary.BigEndian.Uint32(b[len(b)-4:])) case 64: return int64(binary.BigEndian.Uint64(b[len(b)-8:])) default: // the only case left for integer is int256 // big.SetBytes can't tell if a number is negative or positive in itself. // On EVM, if the returned number > max int256, it is negative. // A number is > max int256 if the bit at position 255 is set. ret := new(big.Int).SetBytes(b) if ret.Bit(255) == 1 { ret.Add(MaxUint256, new(big.Int).Neg(ret)) ret.Add(ret, common.Big1) ret.Neg(ret) } return ret } } // readBool reads a bool. func readBool(word []byte) (bool, error) { for _, b := range word[:31] { if b != 0 { return false, errBadBool } } switch word[31] { case 0: return false, nil case 1: return true, nil default: return false, errBadBool } } // A function type is simply the address with the function selection signature at the end. // // readFunctionType enforces that standard by always presenting it as a 24-array (address + sig = 24 bytes) func readFunctionType(t Type, word []byte) (funcTy [24]byte, err error) { if t.T != FunctionTy { return [24]byte{}, fmt.Errorf("abi: invalid type in call to make function type byte array") } if garbage := binary.BigEndian.Uint64(word[24:32]); garbage != 0 { err = fmt.Errorf("abi: got improperly encoded function type, got %v", word) } else { copy(funcTy[:], word[0:24]) } return } // ReadFixedBytes uses reflection to create a fixed array to be read from. func ReadFixedBytes(t Type, word []byte) (interface{}, error) { if t.T != FixedBytesTy { return nil, fmt.Errorf("abi: invalid type in call to make fixed byte array") } // convert array := reflect.New(t.GetType()).Elem() reflect.Copy(array, reflect.ValueOf(word[0:t.Size])) return array.Interface(), nil } // forEachUnpack iteratively unpack elements. func forEachUnpack(t Type, output []byte, start, size int) (interface{}, error) { if size < 0 { return nil, fmt.Errorf("cannot marshal input to array, size is negative (%d)", size) } if start+32*size > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go array: offset %d would go over slice boundary (len=%d)", len(output), start+32*size) } // this value will become our slice or our array, depending on the type var refSlice reflect.Value if t.T == SliceTy { // declare our slice refSlice = reflect.MakeSlice(t.GetType(), size, size) } else if t.T == ArrayTy { // declare our array refSlice = reflect.New(t.GetType()).Elem() } else { return nil, fmt.Errorf("abi: invalid type in array/slice unpacking stage") } // Arrays have packed elements, resulting in longer unpack steps. // Slices have just 32 bytes per element (pointing to the contents). elemSize := getTypeSize(*t.Elem) for i, j := start, 0; j < size; i, j = i+elemSize, j+1 { inter, err := toGoType(i, *t.Elem, output) if err != nil { return nil, err } // append the item to our reflect slice refSlice.Index(j).Set(reflect.ValueOf(inter)) } // return the interface return refSlice.Interface(), nil } func forTupleUnpack(t Type, output []byte) (interface{}, error) { retval := reflect.New(t.GetType()).Elem() virtualArgs := 0 for index, elem := range t.TupleElems { marshalledValue, err := toGoType((index+virtualArgs)*32, *elem, output) if elem.T == ArrayTy && !isDynamicType(*elem) { // If we have a static array, like [3]uint256, these are coded as // just like uint256,uint256,uint256. // This means that we need to add two 'virtual' arguments when // we count the index from now on. // // Array values nested multiple levels deep are also encoded inline: // [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256 // // Calculate the full array size to get the correct offset for the next argument. // Decrement it by 1, as the normal index increment is still applied. virtualArgs += getTypeSize(*elem)/32 - 1 } else if elem.T == TupleTy && !isDynamicType(*elem) { // If we have a static tuple, like (uint256, bool, uint256), these are // coded as just like uint256,bool,uint256 virtualArgs += getTypeSize(*elem)/32 - 1 } if err != nil { return nil, err } retval.Field(index).Set(reflect.ValueOf(marshalledValue)) } return retval.Interface(), nil } // toGoType parses the output bytes and recursively assigns the value of these bytes // into a go type with accordance with the ABI spec. func toGoType(index int, t Type, output []byte) (interface{}, error) { if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32) } var ( returnOutput []byte begin, length int err error ) // if we require a length prefix, find the beginning word and size returned. if t.requiresLengthPrefix() { begin, length, err = lengthPrefixPointsTo(index, output) if err != nil { return nil, err } } else { returnOutput = output[index : index+32] } switch t.T { case TupleTy: if isDynamicType(t) { begin, err := tuplePointsTo(index, output) if err != nil { return nil, err } return forTupleUnpack(t, output[begin:]) } return forTupleUnpack(t, output[index:]) case SliceTy: return forEachUnpack(t, output[begin:], 0, length) case ArrayTy: if isDynamicType(*t.Elem) { offset := binary.BigEndian.Uint64(returnOutput[len(returnOutput)-8:]) if offset > uint64(len(output)) { return nil, fmt.Errorf("abi: toGoType offset greater than output length: offset: %d, len(output): %d", offset, len(output)) } return forEachUnpack(t, output[offset:], 0, t.Size) } return forEachUnpack(t, output[index:], 0, t.Size) case StringTy: // variable arrays are written at the end of the return bytes return string(output[begin : begin+length]), nil case IntTy, UintTy: return ReadInteger(t, returnOutput), nil case BoolTy: return readBool(returnOutput) case AddressTy: return libcommon.BytesToAddress(returnOutput), nil case HashTy: return libcommon.BytesToHash(returnOutput), nil case BytesTy: return output[begin : begin+length], nil case FixedBytesTy: return ReadFixedBytes(t, returnOutput) case FunctionTy: return readFunctionType(t, returnOutput) default: return nil, fmt.Errorf("abi: unknown type %v", t.T) } } // lengthPrefixPointsTo interprets a 32 byte slice as an offset and then determines which indices to look to decode the type. func lengthPrefixPointsTo(index int, output []byte) (start int, length int, err error) { bigOffsetEnd := big.NewInt(0).SetBytes(output[index : index+32]) bigOffsetEnd.Add(bigOffsetEnd, common.Big32) outputLength := big.NewInt(int64(len(output))) if bigOffsetEnd.Cmp(outputLength) > 0 { return 0, 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", bigOffsetEnd, outputLength) } if bigOffsetEnd.BitLen() > 63 { return 0, 0, fmt.Errorf("abi offset larger than int64: %v", bigOffsetEnd) } offsetEnd := int(bigOffsetEnd.Uint64()) lengthBig := big.NewInt(0).SetBytes(output[offsetEnd-32 : offsetEnd]) totalSize := big.NewInt(0) totalSize.Add(totalSize, bigOffsetEnd) totalSize.Add(totalSize, lengthBig) if totalSize.BitLen() > 63 { return 0, 0, fmt.Errorf("abi: length larger than int64: %v", totalSize) } if totalSize.Cmp(outputLength) > 0 { return 0, 0, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %v require %v", outputLength, totalSize) } start = int(bigOffsetEnd.Uint64()) length = int(lengthBig.Uint64()) return } // tuplePointsTo resolves the location reference for dynamic tuple. func tuplePointsTo(index int, output []byte) (start int, err error) { offset := big.NewInt(0).SetBytes(output[index : index+32]) outputLen := big.NewInt(int64(len(output))) if offset.Cmp(big.NewInt(int64(len(output)))) > 0 { return 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", offset, outputLen) } if offset.BitLen() > 63 { return 0, fmt.Errorf("abi offset larger than int64: %v", offset) } return int(offset.Uint64()), nil }