// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package ethash import ( "bytes" "errors" "fmt" "math/big" "runtime" "time" mapset "github.com/deckarep/golang-set" "github.com/holiman/uint256" "github.com/ledgerwatch/erigon-lib/chain" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon/consensus/ethash/ethashcfg" "github.com/ledgerwatch/log/v3" "golang.org/x/crypto/sha3" "github.com/ledgerwatch/erigon/common/math" "github.com/ledgerwatch/erigon/common/u256" "github.com/ledgerwatch/erigon/consensus" "github.com/ledgerwatch/erigon/consensus/misc" "github.com/ledgerwatch/erigon/core/state" "github.com/ledgerwatch/erigon/core/types" "github.com/ledgerwatch/erigon/params" "github.com/ledgerwatch/erigon/rlp" ) // Ethash proof-of-work protocol constants. var ( FrontierBlockReward = uint256.NewInt(5e+18) // Block reward in wei for successfully mining a block ByzantiumBlockReward = uint256.NewInt(3e+18) // Block reward in wei for successfully mining a block upward from Byzantium ConstantinopleBlockReward = uint256.NewInt(2e+18) // Block reward in wei for successfully mining a block upward from Constantinople maxUncles = 2 // Maximum number of uncles allowed in a single block allowedFutureBlockTimeSeconds = int64(15) // Max seconds from current time allowed for blocks, before they're considered future blocks // calcDifficultyEip5133 is the difficulty adjustment algorithm as specified by EIP 5133. // It offsets the bomb a total of 11.4M blocks. // Specification EIP-5133: https://eips.ethereum.org/EIPS/eip-5133 calcDifficultyEip5133 = makeDifficultyCalculator(11400000) // calcDifficultyEip4345 is the difficulty adjustment algorithm as specified by EIP 4345. // It offsets the bomb a total of 10.7M blocks. // Specification EIP-4345: https://eips.ethereum.org/EIPS/eip-4345 calcDifficultyEip4345 = makeDifficultyCalculator(10700000) // calcDifficultyEip3554 is the difficulty adjustment algorithm as specified by EIP 3554. // It offsets the bomb a total of 9.7M blocks. // Specification EIP-3554: https://eips.ethereum.org/EIPS/eip-3554 calcDifficultyEip3554 = makeDifficultyCalculator(9700000) // calcDifficultyEip2384 is the difficulty adjustment algorithm as specified by EIP 2384. // It offsets the bomb 4M blocks from Constantinople, so in total 9M blocks. // Specification EIP-2384: https://eips.ethereum.org/EIPS/eip-2384 calcDifficultyEip2384 = makeDifficultyCalculator(9000000) // calcDifficultyConstantinople is the difficulty adjustment algorithm for Constantinople. // It returns the difficulty that a new block should have when created at time given the // parent block's time and difficulty. The calculation uses the Byzantium rules, but with // bomb offset 5M. // Specification EIP-1234: https://eips.ethereum.org/EIPS/eip-1234 calcDifficultyConstantinople = makeDifficultyCalculator(5000000) // calcDifficultyByzantium is the difficulty adjustment algorithm. It returns // the difficulty that a new block should have when created at time given the // parent block's time and difficulty. The calculation uses the Byzantium rules. // Specification EIP-649: https://eips.ethereum.org/EIPS/eip-649 calcDifficultyByzantium = makeDifficultyCalculator(3000000) ) // Various error messages to mark blocks invalid. These should be private to // prevent engine specific errors from being referenced in the remainder of the // codebase, inherently breaking if the engine is swapped out. Please put common // error types into the consensus package. var ( errOlderBlockTime = errors.New("timestamp older than parent") errTooManyUncles = errors.New("too many uncles") errDuplicateUncle = errors.New("duplicate uncle") errUncleIsAncestor = errors.New("uncle is ancestor") errDanglingUncle = errors.New("uncle's parent is not ancestor") errInvalidDifficulty = errors.New("non-positive difficulty") errInvalidMixDigest = errors.New("invalid mix digest") errInvalidPoW = errors.New("invalid proof-of-work") ) // Type returns underlying consensus engine func (ethash *Ethash) Type() chain.ConsensusName { return chain.EtHashConsensus } // Author implements consensus.Engine, returning the header's coinbase as the // proof-of-work verified author of the block. // This is thread-safe (only access the header.Coinbase) func (ethash *Ethash) Author(header *types.Header) (libcommon.Address, error) { return header.Coinbase, nil } // VerifyHeader checks whether a header conforms to the consensus rules of the // stock Ethereum ethash engine. func (ethash *Ethash) VerifyHeader(chain consensus.ChainHeaderReader, header *types.Header, seal bool) error { // Short circuit if the header is known, or its parent not number := header.Number.Uint64() if chain.GetHeader(header.Hash(), number) != nil { return nil } parent := chain.GetHeader(header.ParentHash, number-1) if parent == nil { log.Error("consensus.ErrUnknownAncestor", "parentNum", number-1, "hash", header.ParentHash.String()) return consensus.ErrUnknownAncestor } // Sanity checks passed, do a proper verification return ethash.verifyHeader(chain, header, parent, false, seal) } // VerifyUncles verifies that the given block's uncles conform to the consensus // rules of the stock Ethereum ethash engine. func (ethash *Ethash) VerifyUncles(chain consensus.ChainReader, header *types.Header, uncles []*types.Header) error { // Verify that there are at most 2 uncles included in this block if len(uncles) > maxUncles { return errTooManyUncles } if len(uncles) == 0 { return nil } uncleBlocks, ancestors := getUncles(chain, header) // Verify each of the uncles that it's recent, but not an ancestor for _, uncle := range uncles { if err := ethash.VerifyUncle(chain, header, uncle, uncleBlocks, ancestors, true); err != nil { return err } } return nil } func getUncles(chain consensus.ChainReader, header *types.Header) (mapset.Set, map[libcommon.Hash]*types.Header) { // Gather the set of past uncles and ancestors uncles, ancestors := mapset.NewSet(), make(map[libcommon.Hash]*types.Header) number, parent := header.Number.Uint64()-1, header.ParentHash for i := 0; i < 7; i++ { ancestorHeader := chain.GetHeader(parent, number) if ancestorHeader == nil { break } ancestors[parent] = ancestorHeader // If the ancestor doesn't have any uncles, we don't have to iterate them if ancestorHeader.UncleHash != types.EmptyUncleHash { // Need to add those uncles to the blacklist too ancestor := chain.GetBlock(parent, number) if ancestor == nil { break } for _, uncle := range ancestor.Uncles() { uncles.Add(uncle.Hash()) } } parent, number = ancestorHeader.ParentHash, number-1 } ancestors[header.Hash()] = header uncles.Add(header.Hash()) return uncles, ancestors } func (ethash *Ethash) VerifyUncle(chain consensus.ChainHeaderReader, header *types.Header, uncle *types.Header, uncles mapset.Set, ancestors map[libcommon.Hash]*types.Header, seal bool) error { // Make sure every uncle is rewarded only once hash := uncle.Hash() if uncles.Contains(hash) { return errDuplicateUncle } uncles.Add(hash) // Make sure the uncle has a valid ancestry if ancestors[hash] != nil { return errUncleIsAncestor } if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == header.ParentHash { return errDanglingUncle } return ethash.verifyHeader(chain, uncle, ancestors[uncle.ParentHash], true, seal) } func VerifyHeaderBasics(chain consensus.ChainHeaderReader, header, parent *types.Header, checkTimestamp, skipGasLimit bool) error { // Ensure that the header's extra-data section is of a reasonable size if uint64(len(header.Extra)) > params.MaximumExtraDataSize { return fmt.Errorf("extra-data too long: %d > %d", len(header.Extra), params.MaximumExtraDataSize) } // Verify the header's timestamp if checkTimestamp { unixNow := time.Now().Unix() if header.Time > uint64(unixNow+allowedFutureBlockTimeSeconds) { return consensus.ErrFutureBlock } } if header.Time <= parent.Time { return errOlderBlockTime } // Verify that the gas limit is <= 2^63-1 if header.GasLimit > params.MaxGasLimit { return fmt.Errorf("invalid gasLimit: have %v, max %v", header.GasLimit, params.MaxGasLimit) } // Verify that the gasUsed is <= gasLimit if header.GasUsed > header.GasLimit { return fmt.Errorf("invalid gasUsed: have %d, gasLimit %d", header.GasUsed, header.GasLimit) } // Verify the block's gas usage and (if applicable) verify the base fee. if !chain.Config().IsLondon(header.Number.Uint64()) { // Verify BaseFee not present before EIP-1559 fork. if header.BaseFee != nil { return fmt.Errorf("invalid baseFee before fork: have %d, expected 'nil'", header.BaseFee) } if !skipGasLimit { if err := misc.VerifyGaslimit(parent.GasLimit, header.GasLimit); err != nil { return err } } } else if err := misc.VerifyEip1559Header(chain.Config(), parent, header, skipGasLimit); err != nil { // Verify the header's EIP-1559 attributes. return err } if header.DataGasUsed != nil { return fmt.Errorf("invalid dataGasUsed before fork: have %v, expected 'nil'", header.DataGasUsed) } if header.ExcessDataGas != nil { return fmt.Errorf("invalid excessDataGas before fork: have %v, expected 'nil'", header.ExcessDataGas) } // Verify that the block number is parent's +1 if diff := new(big.Int).Sub(header.Number, parent.Number); diff.Cmp(big.NewInt(1)) != 0 { return consensus.ErrInvalidNumber } if header.WithdrawalsHash != nil { return consensus.ErrUnexpectedWithdrawals } // If all checks passed, validate any special fields for hard forks if err := misc.VerifyDAOHeaderExtraData(chain.Config(), header); err != nil { return err } return nil } // verifyHeader checks whether a header conforms to the consensus rules of the // stock Ethereum ethash engine. // See YP section 4.3.4. "Block Header Validity" func (ethash *Ethash) verifyHeader(chain consensus.ChainHeaderReader, header, parent *types.Header, uncle bool, seal bool) error { if err := VerifyHeaderBasics(chain, header, parent, !uncle /*checkTimestamp*/, false /*skipGasLimit*/); err != nil { return err } // Verify the block's difficulty based on its timestamp and parent's difficulty expected := ethash.CalcDifficulty(chain, header.Time, parent.Time, parent.Difficulty, parent.Number.Uint64(), parent.Hash(), parent.UncleHash, parent.AuRaStep) if expected.Cmp(header.Difficulty) != 0 { return fmt.Errorf("invalid difficulty: have %v, want %v", header.Difficulty, expected) } // Verify the engine specific seal securing the block if seal { if err := ethash.VerifySeal(nil, header); err != nil { return err } } return nil } func (ethash *Ethash) GenerateSeal(chain consensus.ChainHeaderReader, currnt, parent *types.Header, call consensus.Call) []byte { return nil } // CalcDifficulty is the difficulty adjustment algorithm. It returns // the difficulty that a new block should have when created at time // given the parent block's time and difficulty. func (ethash *Ethash) CalcDifficulty(chain consensus.ChainHeaderReader, time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, _, parentUncleHash libcommon.Hash, _ uint64) *big.Int { return CalcDifficulty(chain.Config(), time, parentTime, parentDifficulty, parentNumber, parentUncleHash) } // CalcDifficulty is the difficulty adjustment algorithm. It returns // the difficulty that a new block should have when created at time // given the parent block's time and difficulty. func CalcDifficulty(config *chain.Config, time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, parentUncleHash libcommon.Hash) *big.Int { next := parentNumber + 1 switch { case config.IsGrayGlacier(next): return calcDifficultyEip5133(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) case config.IsArrowGlacier(next): return calcDifficultyEip4345(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) case config.IsLondon(next): return calcDifficultyEip3554(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) case config.IsMuirGlacier(next): return calcDifficultyEip2384(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) case config.IsConstantinople(next): return calcDifficultyConstantinople(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) case config.IsByzantium(next): return calcDifficultyByzantium(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) case config.IsHomestead(next): return calcDifficultyHomestead(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) default: return calcDifficultyFrontier(time, parentTime, parentDifficulty, parentNumber, parentUncleHash) } } // Some weird constants to avoid constant memory allocs for them. var ( expDiffPeriod = big.NewInt(100000) big1 = big.NewInt(1) big2 = big.NewInt(2) big9 = big.NewInt(9) big10 = big.NewInt(10) bigMinus99 = big.NewInt(-99) ) // makeDifficultyCalculator creates a difficultyCalculator with the given bomb-delay. // the difficulty is calculated with Byzantium rules, which differs from Homestead in // how uncles affect the calculation func makeDifficultyCalculator(bombDelay uint64) func(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, parentUncleHash libcommon.Hash) *big.Int { // Note, the calculations below looks at the parent number, which is 1 below // the block number. Thus we remove one from the delay given bombDelayFromParent := bombDelay - 1 return func(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, parentUncleHash libcommon.Hash) *big.Int { // https://github.com/ethereum/EIPs/issues/100. // algorithm: // diff = (parent_diff + // (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99)) // ) + 2^(periodCount - 2) bigTime := new(big.Int).SetUint64(time) bigParentTime := new(big.Int).SetUint64(parentTime) // holds intermediate values to make the algo easier to read & audit x := new(big.Int) y := new(big.Int) // (2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9 x.Sub(bigTime, bigParentTime) x.Div(x, big9) if parentUncleHash == types.EmptyUncleHash { x.Sub(big1, x) } else { x.Sub(big2, x) } // max((2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9, -99) if x.Cmp(bigMinus99) < 0 { x.Set(bigMinus99) } // parent_diff + (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99)) y.Div(parentDifficulty, params.DifficultyBoundDivisor) x.Mul(y, x) x.Add(parentDifficulty, x) // minimum difficulty can ever be (before exponential factor) if x.Cmp(params.MinimumDifficulty) < 0 { x.Set(params.MinimumDifficulty) } // calculate a fake block number for the ice-age delay // Specification: https://eips.ethereum.org/EIPS/eip-1234 fakeBlockNumber := uint64(0) if parentNumber >= bombDelayFromParent { fakeBlockNumber = parentNumber - bombDelayFromParent } // for the exponential factor periodCount := new(big.Int).SetUint64(fakeBlockNumber) periodCount.Div(periodCount, expDiffPeriod) // the exponential factor, commonly referred to as "the bomb" // diff = diff + 2^(periodCount - 2) if periodCount.Cmp(big1) > 0 { y.Sub(periodCount, big2) y.Exp(big2, y, nil) x.Add(x, y) } return x } } // calcDifficultyHomestead is the difficulty adjustment algorithm. It returns // the difficulty that a new block should have when created at time given the // parent block's time and difficulty. The calculation uses the Homestead rules. func calcDifficultyHomestead(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, _ libcommon.Hash) *big.Int { // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md // algorithm: // diff = (parent_diff + // (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99)) // ) + 2^(periodCount - 2) bigTime := new(big.Int).SetUint64(time) bigParentTime := new(big.Int).SetUint64(parentTime) // holds intermediate values to make the algo easier to read & audit x := new(big.Int) y := new(big.Int) // 1 - (block_timestamp - parent_timestamp) // 10 x.Sub(bigTime, bigParentTime) x.Div(x, big10) x.Sub(big1, x) // max(1 - (block_timestamp - parent_timestamp) // 10, -99) if x.Cmp(bigMinus99) < 0 { x.Set(bigMinus99) } // (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99)) y.Div(parentDifficulty, params.DifficultyBoundDivisor) x.Mul(y, x) x.Add(parentDifficulty, x) // minimum difficulty can ever be (before exponential factor) if x.Cmp(params.MinimumDifficulty) < 0 { x.Set(params.MinimumDifficulty) } // for the exponential factor periodCount := new(big.Int).SetUint64(parentNumber + 1) periodCount.Div(periodCount, expDiffPeriod) // the exponential factor, commonly referred to as "the bomb" // diff = diff + 2^(periodCount - 2) if periodCount.Cmp(big1) > 0 { y.Sub(periodCount, big2) y.Exp(big2, y, nil) x.Add(x, y) } return x } // calcDifficultyFrontier is the difficulty adjustment algorithm. It returns the // difficulty that a new block should have when created at time given the parent // block's time and difficulty. The calculation uses the Frontier rules. func calcDifficultyFrontier(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, _ libcommon.Hash) *big.Int { diff := new(big.Int) adjust := new(big.Int).Div(parentDifficulty, params.DifficultyBoundDivisor) bigTime := new(big.Int) bigParentTime := new(big.Int) bigTime.SetUint64(time) bigParentTime.SetUint64(parentTime) if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 { diff.Add(parentDifficulty, adjust) } else { diff.Sub(parentDifficulty, adjust) } if diff.Cmp(params.MinimumDifficulty) < 0 { diff.Set(params.MinimumDifficulty) } periodCount := new(big.Int).SetUint64(parentNumber + 1) periodCount.Div(periodCount, expDiffPeriod) if periodCount.Cmp(big1) > 0 { // diff = diff + 2^(periodCount - 2) expDiff := periodCount.Sub(periodCount, big2) expDiff.Exp(big2, expDiff, nil) diff.Add(diff, expDiff) diff = math.BigMax(diff, params.MinimumDifficulty) } return diff } // VerifySeal implements consensus.Engine, checking whether the given block satisfies // the PoW difficulty requirements. func (ethash *Ethash) VerifySeal(_ consensus.ChainHeaderReader, header *types.Header) error { return ethash.verifySeal(header, false) } // Exported for fuzzing var FrontierDifficultyCalulator = calcDifficultyFrontier var HomesteadDifficultyCalulator = calcDifficultyHomestead var DynamicDifficultyCalculator = makeDifficultyCalculator // verifySeal checks whether a block satisfies the PoW difficulty requirements, // either using the usual ethash cache for it, or alternatively using a full DAG // to make remote mining fast. func (ethash *Ethash) verifySeal(header *types.Header, fulldag bool) error { //nolint:unparam // If we're running a shared PoW, delegate verification to it if ethash.shared != nil { return ethash.shared.verifySeal(header, fulldag) } // Ensure that we have a valid difficulty for the block if header.Difficulty.Sign() <= 0 { return errInvalidDifficulty } // Recompute the digest and PoW values number := header.Number.Uint64() var ( digest []byte result []byte ) // If fast-but-heavy PoW verification was requested, use an ethash dataset if fulldag { dataset := ethash.dataset(number, true) if dataset.generated() { digest, result = hashimotoFull(dataset.dataset, ethash.SealHash(header).Bytes(), header.Nonce.Uint64()) // Datasets are unmapped in a finalizer. Ensure that the dataset stays alive // until after the call to hashimotoFull so it's not unmapped while being used. runtime.KeepAlive(dataset) } else { // Dataset not yet generated, don't hang, use a cache instead fulldag = false } } // If slow-but-light PoW verification was requested (or DAG not yet ready), use an ethash cache if !fulldag { cache := ethash.cache(number) size := datasetSize(number) if ethash.config.PowMode == ethashcfg.ModeTest { size = 32 * 1024 } digest, result = hashimotoLight(size, cache.cache, ethash.SealHash(header).Bytes(), header.Nonce.Uint64()) // Caches are unmapped in a finalizer. Ensure that the cache stays alive // until after the call to hashimotoLight so it's not unmapped while being used. runtime.KeepAlive(cache) } // Verify the calculated values against the ones provided in the header if !bytes.Equal(header.MixDigest[:], digest) { return errInvalidMixDigest } target := new(big.Int).Div(two256, header.Difficulty) if new(big.Int).SetBytes(result).Cmp(target) > 0 { return errInvalidPoW } return nil } // Prepare implements consensus.Engine, initializing the difficulty field of a // header to conform to the ethash protocol. The changes are done inline. func (ethash *Ethash) Prepare(chain consensus.ChainHeaderReader, header *types.Header, state *state.IntraBlockState) error { parent := chain.GetHeader(header.ParentHash, header.Number.Uint64()-1) if parent == nil { return consensus.ErrUnknownAncestor } header.Difficulty = ethash.CalcDifficulty(chain, header.Time, parent.Time, parent.Difficulty, parent.Number.Uint64(), parent.Hash(), parent.UncleHash, parent.AuRaStep) return nil } func (ethash *Ethash) Initialize(config *chain.Config, chain consensus.ChainHeaderReader, header *types.Header, state *state.IntraBlockState, txs []types.Transaction, uncles []*types.Header, syscall consensus.SystemCall) { } // Finalize implements consensus.Engine, accumulating the block and uncle rewards, // setting the final state on the header func (ethash *Ethash) Finalize(config *chain.Config, header *types.Header, state *state.IntraBlockState, txs types.Transactions, uncles []*types.Header, r types.Receipts, withdrawals []*types.Withdrawal, chain consensus.ChainHeaderReader, syscall consensus.SystemCall, ) (types.Transactions, types.Receipts, error) { // Accumulate any block and uncle rewards and commit the final state root accumulateRewards(config, state, header, uncles) return txs, r, nil } // FinalizeAndAssemble implements consensus.Engine, accumulating the block and // uncle rewards, setting the final state and assembling the block. func (ethash *Ethash) FinalizeAndAssemble(chainConfig *chain.Config, header *types.Header, state *state.IntraBlockState, txs types.Transactions, uncles []*types.Header, r types.Receipts, withdrawals []*types.Withdrawal, chain consensus.ChainHeaderReader, syscall consensus.SystemCall, call consensus.Call, ) (*types.Block, types.Transactions, types.Receipts, error) { // Finalize block outTxs, outR, err := ethash.Finalize(chainConfig, header, state, txs, uncles, r, withdrawals, chain, syscall) if err != nil { return nil, nil, nil, err } // Header seems complete, assemble into a block and return return types.NewBlock(header, outTxs, uncles, outR, withdrawals), outTxs, outR, nil } // SealHash returns the hash of a block prior to it being sealed. func (ethash *Ethash) SealHash(header *types.Header) (hash libcommon.Hash) { hasher := sha3.NewLegacyKeccak256() enc := []interface{}{ header.ParentHash, header.UncleHash, header.Coinbase, header.Root, header.TxHash, header.ReceiptHash, header.Bloom, header.Difficulty, header.Number, header.GasLimit, header.GasUsed, header.Time, header.Extra, } if header.BaseFee != nil { enc = append(enc, header.BaseFee) } rlp.Encode(hasher, enc) hasher.Sum(hash[:0]) return hash } func (ethash *Ethash) IsServiceTransaction(sender libcommon.Address, syscall consensus.SystemCall) bool { return false } func (ethash *Ethash) CalculateRewards(config *chain.Config, header *types.Header, uncles []*types.Header, _ consensus.SystemCall, ) ([]consensus.Reward, error) { minerReward, uncleRewards := AccumulateRewards(config, header, uncles) rewards := make([]consensus.Reward, 1+len(uncles)) rewards[0].Beneficiary = header.Coinbase rewards[0].Kind = consensus.RewardAuthor rewards[0].Amount = minerReward for i, uncle := range uncles { rewards[i+1].Beneficiary = uncle.Coinbase rewards[i+1].Kind = consensus.RewardUncle rewards[i+1].Amount = uncleRewards[i] } return rewards, nil } // AccumulateRewards returns rewards for a given block. The mining reward consists // of the static blockReward plus a reward for each included uncle (if any). Individual // uncle rewards are also returned in an array. func AccumulateRewards(config *chain.Config, header *types.Header, uncles []*types.Header) (uint256.Int, []uint256.Int) { // Select the correct block reward based on chain progression blockReward := FrontierBlockReward if config.IsByzantium(header.Number.Uint64()) { blockReward = ByzantiumBlockReward } if config.IsConstantinople(header.Number.Uint64()) { blockReward = ConstantinopleBlockReward } // Accumulate the rewards for the miner and any included uncles uncleRewards := []uint256.Int{} reward := new(uint256.Int).Set(blockReward) r := new(uint256.Int) headerNum, _ := uint256.FromBig(header.Number) for _, uncle := range uncles { uncleNum, _ := uint256.FromBig(uncle.Number) r.Add(uncleNum, u256.Num8) r.Sub(r, headerNum) r.Mul(r, blockReward) r.Div(r, u256.Num8) uncleRewards = append(uncleRewards, *r) r.Div(blockReward, u256.Num32) reward.Add(reward, r) } return *reward, uncleRewards } // accumulateRewards retrieves rewards for a block and applies them to the coinbase accounts for miner and uncle miners func accumulateRewards(config *chain.Config, state *state.IntraBlockState, header *types.Header, uncles []*types.Header) { minerReward, uncleRewards := AccumulateRewards(config, header, uncles) for i, uncle := range uncles { if i < len(uncleRewards) { state.AddBalance(uncle.Coinbase, &uncleRewards[i]) } } state.AddBalance(header.Coinbase, &minerReward) }