/* Copyright 2022 The Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package commitment import ( "bytes" "encoding/binary" "encoding/hex" "fmt" "hash" "io" "math/bits" "strings" "github.com/holiman/uint256" "github.com/ledgerwatch/log/v3" "golang.org/x/crypto/sha3" "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon-lib/common/length" "github.com/ledgerwatch/erigon-lib/rlp" ) // keccakState wraps sha3.state. In addition to the usual hash methods, it also supports // Read to get a variable amount of data from the hash state. Read is faster than Sum // because it doesn't copy the internal state, but also modifies the internal state. type keccakState interface { hash.Hash Read([]byte) (int, error) } // HexPatriciaHashed implements commitment based on patricia merkle tree with radix 16, // with keys pre-hashed by keccak256 type HexPatriciaHashed struct { root Cell // Root cell of the tree // How many rows (starting from row 0) are currently active and have corresponding selected columns // Last active row does not have selected column activeRows int // Length of the key that reflects current positioning of the grid. It maybe larger than number of active rows, // if an account leaf cell represents multiple nibbles in the key currentKeyLen int accountKeyLen int // Rows of the grid correspond to the level of depth in the patricia tree // Columns of the grid correspond to pointers to the nodes further from the root grid [128][16]Cell // First 64 rows of this grid are for account trie, and next 64 rows are for storage trie currentKey [128]byte // For each row indicates which column is currently selected depths [128]int // For each row, the depth of cells in that row branchBefore [128]bool // For each row, whether there was a branch node in the database loaded in unfold touchMap [128]uint16 // For each row, bitmap of cells that were either present before modification, or modified or deleted afterMap [128]uint16 // For each row, bitmap of cells that were present after modification keccak keccakState keccak2 keccakState rootChecked bool // Set to false if it is not known whether the root is empty, set to true if it is checked rootTouched bool rootPresent bool trace bool // Function used to load branch node and fill up the cells // For each cell, it sets the cell type, clears the modified flag, fills the hash, // and for the extension, account, and leaf type, the `l` and `k` branchFn func(prefix []byte) ([]byte, error) // Function used to fetch account with given plain key accountFn func(plainKey []byte, cell *Cell) error // Function used to fetch storage with given plain key storageFn func(plainKey []byte, cell *Cell) error hashAuxBuffer [128]byte // buffer to compute cell hash or write hash-related things auxBuffer *bytes.Buffer // auxiliary buffer used during branch updates encoding } // represents state of the tree type state struct { Root []byte // encoded root cell Depths [128]int // For each row, the depth of cells in that row TouchMap [128]uint16 // For each row, bitmap of cells that were either present before modification, or modified or deleted AfterMap [128]uint16 // For each row, bitmap of cells that were present after modification BranchBefore [128]bool // For each row, whether there was a branch node in the database loaded in unfold CurrentKey [128]byte // For each row indicates which column is currently selected CurrentKeyLen int8 RootChecked bool // Set to false if it is not known whether the root is empty, set to true if it is checked RootTouched bool RootPresent bool } func NewHexPatriciaHashed(accountKeyLen int, branchFn func(prefix []byte) ([]byte, error), accountFn func(plainKey []byte, cell *Cell) error, storageFn func(plainKey []byte, cell *Cell) error, ) *HexPatriciaHashed { return &HexPatriciaHashed{ keccak: sha3.NewLegacyKeccak256().(keccakState), keccak2: sha3.NewLegacyKeccak256().(keccakState), accountKeyLen: accountKeyLen, branchFn: branchFn, accountFn: accountFn, storageFn: storageFn, auxBuffer: bytes.NewBuffer(make([]byte, 8192)), } } type Cell struct { Balance uint256.Int Nonce uint64 hl int // Length of the hash (or embedded) StorageLen int apl int // length of account plain key spl int // length of the storage plain key downHashedLen int extLen int downHashedKey [128]byte extension [64]byte spk [length.Addr + length.Hash]byte // storage plain key h [length.Hash]byte // cell hash CodeHash [length.Hash]byte // hash of the bytecode Storage [length.Hash]byte apk [length.Addr]byte // account plain key Delete bool } var ( EmptyRootHash, _ = hex.DecodeString("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") EmptyCodeHash, _ = hex.DecodeString("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470") ) func (cell *Cell) fillEmpty() { cell.apl = 0 cell.spl = 0 cell.downHashedLen = 0 cell.extLen = 0 cell.hl = 0 cell.Nonce = 0 cell.Balance.Clear() copy(cell.CodeHash[:], EmptyCodeHash) cell.StorageLen = 0 cell.Delete = false } func (cell *Cell) fillFromUpperCell(upCell *Cell, depth, depthIncrement int) { if upCell.downHashedLen >= depthIncrement { cell.downHashedLen = upCell.downHashedLen - depthIncrement } else { cell.downHashedLen = 0 } if upCell.downHashedLen > depthIncrement { copy(cell.downHashedKey[:], upCell.downHashedKey[depthIncrement:upCell.downHashedLen]) } if upCell.extLen >= depthIncrement { cell.extLen = upCell.extLen - depthIncrement } else { cell.extLen = 0 } if upCell.extLen > depthIncrement { copy(cell.extension[:], upCell.extension[depthIncrement:upCell.extLen]) } if depth <= 64 { cell.apl = upCell.apl if upCell.apl > 0 { copy(cell.apk[:], upCell.apk[:cell.apl]) cell.Balance.Set(&upCell.Balance) cell.Nonce = upCell.Nonce copy(cell.CodeHash[:], upCell.CodeHash[:]) cell.extLen = upCell.extLen if upCell.extLen > 0 { copy(cell.extension[:], upCell.extension[:upCell.extLen]) } } } else { cell.apl = 0 } cell.spl = upCell.spl if upCell.spl > 0 { copy(cell.spk[:], upCell.spk[:upCell.spl]) cell.StorageLen = upCell.StorageLen if upCell.StorageLen > 0 { copy(cell.Storage[:], upCell.Storage[:upCell.StorageLen]) } } cell.hl = upCell.hl if upCell.hl > 0 { copy(cell.h[:], upCell.h[:upCell.hl]) } } func (cell *Cell) fillFromLowerCell(lowCell *Cell, lowDepth int, preExtension []byte, nibble int) { if lowCell.apl > 0 || lowDepth < 64 { cell.apl = lowCell.apl } if lowCell.apl > 0 { copy(cell.apk[:], lowCell.apk[:cell.apl]) cell.Balance.Set(&lowCell.Balance) cell.Nonce = lowCell.Nonce copy(cell.CodeHash[:], lowCell.CodeHash[:]) } cell.spl = lowCell.spl if lowCell.spl > 0 { copy(cell.spk[:], lowCell.spk[:cell.spl]) cell.StorageLen = lowCell.StorageLen if lowCell.StorageLen > 0 { copy(cell.Storage[:], lowCell.Storage[:lowCell.StorageLen]) } } if lowCell.hl > 0 { if (lowCell.apl == 0 && lowDepth < 64) || (lowCell.spl == 0 && lowDepth > 64) { // Extension is related to either accounts branch node, or storage branch node, we prepend it by preExtension | nibble if len(preExtension) > 0 { copy(cell.extension[:], preExtension) } cell.extension[len(preExtension)] = byte(nibble) if lowCell.extLen > 0 { copy(cell.extension[1+len(preExtension):], lowCell.extension[:lowCell.extLen]) } cell.extLen = lowCell.extLen + 1 + len(preExtension) } else { // Extension is related to a storage branch node, so we copy it upwards as is cell.extLen = lowCell.extLen if lowCell.extLen > 0 { copy(cell.extension[:], lowCell.extension[:lowCell.extLen]) } } } cell.hl = lowCell.hl if lowCell.hl > 0 { copy(cell.h[:], lowCell.h[:lowCell.hl]) } } func hashKey(keccak keccakState, plainKey []byte, dest []byte, hashedKeyOffset int) error { keccak.Reset() var hashBufBack [length.Hash]byte hashBuf := hashBufBack[:] if _, err := keccak.Write(plainKey); err != nil { return err } if _, err := keccak.Read(hashBuf); err != nil { return err } hashBuf = hashBuf[hashedKeyOffset/2:] var k int if hashedKeyOffset%2 == 1 { dest[0] = hashBuf[0] & 0xf k++ hashBuf = hashBuf[1:] } for _, c := range hashBuf { dest[k] = (c >> 4) & 0xf k++ dest[k] = c & 0xf k++ } return nil } func (cell *Cell) deriveHashedKeys(depth int, keccak keccakState, accountKeyLen int) error { extraLen := 0 if cell.apl > 0 { if depth > 64 { return fmt.Errorf("deriveHashedKeys accountPlainKey present at depth > 64") } extraLen = 64 - depth } if cell.spl > 0 { if depth >= 64 { extraLen = 128 - depth } else { extraLen += 64 } } if extraLen > 0 { if cell.downHashedLen > 0 { copy(cell.downHashedKey[extraLen:], cell.downHashedKey[:cell.downHashedLen]) } cell.downHashedLen += extraLen var hashedKeyOffset, downOffset int if cell.apl > 0 { if err := hashKey(keccak, cell.apk[:cell.apl], cell.downHashedKey[:], depth); err != nil { return err } downOffset = 64 - depth } if cell.spl > 0 { if depth >= 64 { hashedKeyOffset = depth - 64 } if err := hashKey(keccak, cell.spk[accountKeyLen:cell.spl], cell.downHashedKey[downOffset:], hashedKeyOffset); err != nil { return err } } } return nil } func (cell *Cell) fillFromFields(data []byte, pos int, fieldBits PartFlags) (int, error) { if fieldBits&HashedKeyPart != 0 { l, n := binary.Uvarint(data[pos:]) if n == 0 { return 0, fmt.Errorf("fillFromFields buffer too small for hashedKey len") } else if n < 0 { return 0, fmt.Errorf("fillFromFields value overflow for hashedKey len") } pos += n if len(data) < pos+int(l) { return 0, fmt.Errorf("fillFromFields buffer too small for hashedKey exp %d got %d", pos+int(l), len(data)) } cell.downHashedLen = int(l) cell.extLen = int(l) if l > 0 { copy(cell.downHashedKey[:], data[pos:pos+int(l)]) copy(cell.extension[:], data[pos:pos+int(l)]) pos += int(l) } } else { cell.downHashedLen = 0 cell.extLen = 0 } if fieldBits&AccountPlainPart != 0 { l, n := binary.Uvarint(data[pos:]) if n == 0 { return 0, fmt.Errorf("fillFromFields buffer too small for accountPlainKey len") } else if n < 0 { return 0, fmt.Errorf("fillFromFields value overflow for accountPlainKey len") } pos += n if len(data) < pos+int(l) { return 0, fmt.Errorf("fillFromFields buffer too small for accountPlainKey") } cell.apl = int(l) if l > 0 { copy(cell.apk[:], data[pos:pos+int(l)]) pos += int(l) } } else { cell.apl = 0 } if fieldBits&StoragePlainPart != 0 { l, n := binary.Uvarint(data[pos:]) if n == 0 { return 0, fmt.Errorf("fillFromFields buffer too small for storagePlainKey len") } else if n < 0 { return 0, fmt.Errorf("fillFromFields value overflow for storagePlainKey len") } pos += n if len(data) < pos+int(l) { return 0, fmt.Errorf("fillFromFields buffer too small for storagePlainKey") } cell.spl = int(l) if l > 0 { copy(cell.spk[:], data[pos:pos+int(l)]) pos += int(l) } } else { cell.spl = 0 } if fieldBits&HashPart != 0 { l, n := binary.Uvarint(data[pos:]) if n == 0 { return 0, fmt.Errorf("fillFromFields buffer too small for hash len") } else if n < 0 { return 0, fmt.Errorf("fillFromFields value overflow for hash len") } pos += n if len(data) < pos+int(l) { return 0, fmt.Errorf("fillFromFields buffer too small for hash") } cell.hl = int(l) if l > 0 { copy(cell.h[:], data[pos:pos+int(l)]) pos += int(l) } } else { cell.hl = 0 } return pos, nil } func (cell *Cell) setStorage(value []byte) { cell.StorageLen = len(value) if len(value) > 0 { copy(cell.Storage[:], value) } } func (cell *Cell) setAccountFields(codeHash []byte, balance *uint256.Int, nonce uint64) { copy(cell.CodeHash[:], codeHash) cell.Balance.SetBytes(balance.Bytes()) cell.Nonce = nonce } func (cell *Cell) accountForHashing(buffer []byte, storageRootHash [length.Hash]byte) int { balanceBytes := 0 if !cell.Balance.LtUint64(128) { balanceBytes = cell.Balance.ByteLen() } var nonceBytes int if cell.Nonce < 128 && cell.Nonce != 0 { nonceBytes = 0 } else { nonceBytes = common.BitLenToByteLen(bits.Len64(cell.Nonce)) } var structLength = uint(balanceBytes + nonceBytes + 2) structLength += 66 // Two 32-byte arrays + 2 prefixes var pos int if structLength < 56 { buffer[0] = byte(192 + structLength) pos = 1 } else { lengthBytes := common.BitLenToByteLen(bits.Len(structLength)) buffer[0] = byte(247 + lengthBytes) for i := lengthBytes; i > 0; i-- { buffer[i] = byte(structLength) structLength >>= 8 } pos = lengthBytes + 1 } // Encoding nonce if cell.Nonce < 128 && cell.Nonce != 0 { buffer[pos] = byte(cell.Nonce) } else { buffer[pos] = byte(128 + nonceBytes) var nonce = cell.Nonce for i := nonceBytes; i > 0; i-- { buffer[pos+i] = byte(nonce) nonce >>= 8 } } pos += 1 + nonceBytes // Encoding balance if cell.Balance.LtUint64(128) && !cell.Balance.IsZero() { buffer[pos] = byte(cell.Balance.Uint64()) pos++ } else { buffer[pos] = byte(128 + balanceBytes) pos++ cell.Balance.WriteToSlice(buffer[pos : pos+balanceBytes]) pos += balanceBytes } // Encoding Root and CodeHash buffer[pos] = 128 + 32 pos++ copy(buffer[pos:], storageRootHash[:]) pos += 32 buffer[pos] = 128 + 32 pos++ copy(buffer[pos:], cell.CodeHash[:]) pos += 32 return pos } func (hph *HexPatriciaHashed) completeLeafHash(buf, keyPrefix []byte, kp, kl, compactLen int, key []byte, compact0 byte, ni int, val rlp.RlpSerializable, singleton bool) ([]byte, error) { totalLen := kp + kl + val.DoubleRLPLen() var lenPrefix [4]byte pt := rlp.GenerateStructLen(lenPrefix[:], totalLen) embedded := !singleton && totalLen+pt < length.Hash var writer io.Writer if embedded { //hph.byteArrayWriter.Setup(buf) hph.auxBuffer.Reset() writer = hph.auxBuffer } else { hph.keccak.Reset() writer = hph.keccak } if _, err := writer.Write(lenPrefix[:pt]); err != nil { return nil, err } if _, err := writer.Write(keyPrefix[:kp]); err != nil { return nil, err } var b [1]byte b[0] = compact0 if _, err := writer.Write(b[:]); err != nil { return nil, err } for i := 1; i < compactLen; i++ { b[0] = key[ni]*16 + key[ni+1] if _, err := writer.Write(b[:]); err != nil { return nil, err } ni += 2 } var prefixBuf [8]byte if err := val.ToDoubleRLP(writer, prefixBuf[:]); err != nil { return nil, err } if embedded { buf = hph.auxBuffer.Bytes() } else { var hashBuf [33]byte hashBuf[0] = 0x80 + length.Hash if _, err := hph.keccak.Read(hashBuf[1:]); err != nil { return nil, err } buf = append(buf, hashBuf[:]...) } return buf, nil } func (hph *HexPatriciaHashed) leafHashWithKeyVal(buf, key []byte, val rlp.RlpSerializableBytes, singleton bool) ([]byte, error) { // Compute the total length of binary representation var kp, kl int // Write key var compactLen int var ni int var compact0 byte compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble ni = 1 } else { compact0 = 0x20 } var keyPrefix [1]byte if compactLen > 1 { keyPrefix[0] = 0x80 + byte(compactLen) kp = 1 kl = compactLen } else { kl = 1 } return hph.completeLeafHash(buf, keyPrefix[:], kp, kl, compactLen, key, compact0, ni, val, singleton) } func (hph *HexPatriciaHashed) accountLeafHashWithKey(buf, key []byte, val rlp.RlpSerializable) ([]byte, error) { // Compute the total length of binary representation var kp, kl int // Write key var compactLen int var ni int var compact0 byte if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 48 + key[0] // Odd (1<<4) + first nibble ni = 1 } else { compact0 = 32 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 16 + key[0] // Odd (1<<4) + first nibble ni = 1 } } var keyPrefix [1]byte if compactLen > 1 { keyPrefix[0] = byte(128 + compactLen) kp = 1 kl = compactLen } else { kl = 1 } return hph.completeLeafHash(buf, keyPrefix[:], kp, kl, compactLen, key, compact0, ni, val, true) } func (hph *HexPatriciaHashed) extensionHash(key []byte, hash []byte) ([length.Hash]byte, error) { var hashBuf [length.Hash]byte // Compute the total length of binary representation var kp, kl int // Write key var compactLen int var ni int var compact0 byte if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble ni = 1 } else { compact0 = 0x20 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble ni = 1 } } var keyPrefix [1]byte if compactLen > 1 { keyPrefix[0] = 0x80 + byte(compactLen) kp = 1 kl = compactLen } else { kl = 1 } totalLen := kp + kl + 33 var lenPrefix [4]byte pt := rlp.GenerateStructLen(lenPrefix[:], totalLen) hph.keccak.Reset() if _, err := hph.keccak.Write(lenPrefix[:pt]); err != nil { return hashBuf, err } if _, err := hph.keccak.Write(keyPrefix[:kp]); err != nil { return hashBuf, err } var b [1]byte b[0] = compact0 if _, err := hph.keccak.Write(b[:]); err != nil { return hashBuf, err } for i := 1; i < compactLen; i++ { b[0] = key[ni]*16 + key[ni+1] if _, err := hph.keccak.Write(b[:]); err != nil { return hashBuf, err } ni += 2 } b[0] = 0x80 + length.Hash if _, err := hph.keccak.Write(b[:]); err != nil { return hashBuf, err } if _, err := hph.keccak.Write(hash); err != nil { return hashBuf, err } // Replace previous hash with the new one if _, err := hph.keccak.Read(hashBuf[:]); err != nil { return hashBuf, err } return hashBuf, nil } func (hph *HexPatriciaHashed) computeCellHashLen(cell *Cell, depth int) int { if cell.spl > 0 && depth >= 64 { keyLen := 128 - depth + 1 // Length of hex key with terminator character var kp, kl int compactLen := (keyLen-1)/2 + 1 if compactLen > 1 { kp = 1 kl = compactLen } else { kl = 1 } val := rlp.RlpSerializableBytes(cell.Storage[:cell.StorageLen]) totalLen := kp + kl + val.DoubleRLPLen() var lenPrefix [4]byte pt := rlp.GenerateStructLen(lenPrefix[:], totalLen) if totalLen+pt < length.Hash { return totalLen + pt } } return length.Hash + 1 } func (hph *HexPatriciaHashed) computeCellHash(cell *Cell, depth int, buf []byte) ([]byte, error) { var err error var storageRootHash [length.Hash]byte storageRootHashIsSet := false if cell.spl > 0 { var hashedKeyOffset int if depth >= 64 { hashedKeyOffset = depth - 64 } singleton := depth <= 64 if err := hashKey(hph.keccak, cell.spk[hph.accountKeyLen:cell.spl], cell.downHashedKey[:], hashedKeyOffset); err != nil { return nil, err } cell.downHashedKey[64-hashedKeyOffset] = 16 // Add terminator if singleton { if hph.trace { fmt.Printf("leafHashWithKeyVal(singleton) for [%x]=>[%x]\n", cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen]) } aux := make([]byte, 0, 33) if aux, err = hph.leafHashWithKeyVal(aux, cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen], true); err != nil { return nil, err } storageRootHash = *(*[length.Hash]byte)(aux[1:]) storageRootHashIsSet = true } else { if hph.trace { fmt.Printf("leafHashWithKeyVal for [%x]=>[%x]\n", cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen]) } return hph.leafHashWithKeyVal(buf, cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen], false) } } if cell.apl > 0 { if err := hashKey(hph.keccak, cell.apk[:cell.apl], cell.downHashedKey[:], depth); err != nil { return nil, err } cell.downHashedKey[64-depth] = 16 // Add terminator if !storageRootHashIsSet { if cell.extLen > 0 { // Extension if cell.hl > 0 { if hph.trace { fmt.Printf("extensionHash for [%x]=>[%x]\n", cell.extension[:cell.extLen], cell.h[:cell.hl]) } if storageRootHash, err = hph.extensionHash(cell.extension[:cell.extLen], cell.h[:cell.hl]); err != nil { return nil, err } } else { return nil, fmt.Errorf("computeCellHash extension without hash") } } else if cell.hl > 0 { storageRootHash = cell.h } else { storageRootHash = *(*[length.Hash]byte)(EmptyRootHash) } } var valBuf [128]byte valLen := cell.accountForHashing(valBuf[:], storageRootHash) if hph.trace { fmt.Printf("accountLeafHashWithKey for [%x]=>[%x]\n", hph.hashAuxBuffer[:65-depth], valBuf[:valLen]) } return hph.accountLeafHashWithKey(buf, cell.downHashedKey[:65-depth], rlp.RlpEncodedBytes(valBuf[:valLen])) } buf = append(buf, 0x80+32) if cell.extLen > 0 { // Extension if cell.hl > 0 { if hph.trace { fmt.Printf("extensionHash for [%x]=>[%x]\n", cell.extension[:cell.extLen], cell.h[:cell.hl]) } var hash [length.Hash]byte if hash, err = hph.extensionHash(cell.extension[:cell.extLen], cell.h[:cell.hl]); err != nil { return nil, err } buf = append(buf, hash[:]...) } else { return nil, fmt.Errorf("computeCellHash extension without hash") } } else if cell.hl > 0 { buf = append(buf, cell.h[:cell.hl]...) } else { buf = append(buf, EmptyRootHash...) } return buf, nil } func (hph *HexPatriciaHashed) needUnfolding(hashedKey []byte) int { var cell *Cell var depth int if hph.activeRows == 0 { if hph.trace { fmt.Printf("needUnfolding root, rootChecked = %t\n", hph.rootChecked) } if hph.rootChecked && hph.root.downHashedLen == 0 && hph.root.hl == 0 { // Previously checked, empty root, no unfolding needed return 0 } cell = &hph.root if cell.downHashedLen == 0 && cell.hl == 0 && !hph.rootChecked { // Need to attempt to unfold the root return 1 } } else { col := int(hashedKey[hph.currentKeyLen]) cell = &hph.grid[hph.activeRows-1][col] depth = hph.depths[hph.activeRows-1] if hph.trace { fmt.Printf("needUnfolding cell (%d, %x), currentKey=[%x], depth=%d, cell.h=[%x]\n", hph.activeRows-1, col, hph.currentKey[:hph.currentKeyLen], depth, cell.h[:cell.hl]) } } if len(hashedKey) <= depth { return 0 } if cell.downHashedLen == 0 { if cell.hl == 0 { // cell is empty, no need to unfold further return 0 } // unfold branch node return 1 } cpl := commonPrefixLen(hashedKey[depth:], cell.downHashedKey[:cell.downHashedLen-1]) if hph.trace { fmt.Printf("cpl=%d, cell.downHashedKey=[%x], depth=%d, hashedKey[depth:]=[%x]\n", cpl, cell.downHashedKey[:cell.downHashedLen], depth, hashedKey[depth:]) } unfolding := cpl + 1 if depth < 64 && depth+unfolding > 64 { // This is to make sure that unfolding always breaks at the level where storage subtrees start unfolding = 64 - depth if hph.trace { fmt.Printf("adjusted unfolding=%d\n", unfolding) } } return unfolding } // unfoldBranchNode returns true if unfolding has been done func (hph *HexPatriciaHashed) unfoldBranchNode(row int, deleted bool, depth int) (bool, error) { branchData, err := hph.branchFn(hexToCompact(hph.currentKey[:hph.currentKeyLen])) if err != nil { return false, err } if !hph.rootChecked && hph.currentKeyLen == 0 && len(branchData) == 0 { // Special case - empty or deleted root hph.rootChecked = true return false, nil } if len(branchData) == 0 { log.Warn("got empty branch data during unfold", "key", hex.EncodeToString(hexToCompact(hph.currentKey[:hph.currentKeyLen])), "row", row, "depth", depth, "deleted", deleted) } hph.branchBefore[row] = true bitmap := binary.BigEndian.Uint16(branchData[0:]) pos := 2 if deleted { // All cells come as deleted (touched but not present after) hph.afterMap[row] = 0 hph.touchMap[row] = bitmap } else { hph.afterMap[row] = bitmap hph.touchMap[row] = 0 } //fmt.Printf("unfoldBranchNode [%x], afterMap = [%016b], touchMap = [%016b]\n", branchData, hph.afterMap[row], hph.touchMap[row]) // Loop iterating over the set bits of modMask for bitset, j := bitmap, 0; bitset != 0; j++ { bit := bitset & -bitset nibble := bits.TrailingZeros16(bit) cell := &hph.grid[row][nibble] fieldBits := branchData[pos] pos++ var err error if pos, err = cell.fillFromFields(branchData, pos, PartFlags(fieldBits)); err != nil { return false, fmt.Errorf("prefix [%x], branchData[%x]: %w", hph.currentKey[:hph.currentKeyLen], branchData, err) } if hph.trace { fmt.Printf("cell (%d, %x) depth=%d, hash=[%x], a=[%x], s=[%x], ex=[%x]\n", row, nibble, depth, cell.h[:cell.hl], cell.apk[:cell.apl], cell.spk[:cell.spl], cell.extension[:cell.extLen]) } if cell.apl > 0 { hph.accountFn(cell.apk[:cell.apl], cell) if hph.trace { fmt.Printf("accountFn[%x] return balance=%d, nonce=%d code=%x\n", cell.apk[:cell.apl], &cell.Balance, cell.Nonce, cell.CodeHash[:]) } } if cell.spl > 0 { hph.storageFn(cell.spk[:cell.spl], cell) } if err = cell.deriveHashedKeys(depth, hph.keccak, hph.accountKeyLen); err != nil { return false, err } bitset ^= bit } return true, nil } func (hph *HexPatriciaHashed) unfold(hashedKey []byte, unfolding int) error { if hph.trace { fmt.Printf("unfold %d: activeRows: %d\n", unfolding, hph.activeRows) } var upCell *Cell var touched, present bool var col byte var upDepth, depth int if hph.activeRows == 0 { if hph.rootChecked && hph.root.hl == 0 && hph.root.downHashedLen == 0 { // No unfolding for empty root return nil } upCell = &hph.root touched = hph.rootTouched present = hph.rootPresent if hph.trace { fmt.Printf("unfold root, touched %t, present %t, column %d\n", touched, present, col) } } else { upDepth = hph.depths[hph.activeRows-1] col = hashedKey[upDepth-1] upCell = &hph.grid[hph.activeRows-1][col] touched = hph.touchMap[hph.activeRows-1]&(uint16(1)<= unfolding { depth = upDepth + unfolding nibble := upCell.downHashedKey[unfolding-1] if touched { hph.touchMap[row] = uint16(1) << nibble } if present { hph.afterMap[row] = uint16(1) << nibble } cell := &hph.grid[row][nibble] cell.fillFromUpperCell(upCell, depth, unfolding) if hph.trace { fmt.Printf("cell (%d, %x) depth=%d\n", row, nibble, depth) } if row >= 64 { cell.apl = 0 } if unfolding > 1 { copy(hph.currentKey[hph.currentKeyLen:], upCell.downHashedKey[:unfolding-1]) } hph.currentKeyLen += unfolding - 1 } else { // upCell.downHashedLen < unfolding depth = upDepth + upCell.downHashedLen nibble := upCell.downHashedKey[upCell.downHashedLen-1] if touched { hph.touchMap[row] = uint16(1) << nibble } if present { hph.afterMap[row] = uint16(1) << nibble } cell := &hph.grid[row][nibble] cell.fillFromUpperCell(upCell, depth, upCell.downHashedLen) if hph.trace { fmt.Printf("cell (%d, %x) depth=%d\n", row, nibble, depth) } if row >= 64 { cell.apl = 0 } if upCell.downHashedLen > 1 { copy(hph.currentKey[hph.currentKeyLen:], upCell.downHashedKey[:upCell.downHashedLen-1]) } hph.currentKeyLen += upCell.downHashedLen - 1 } hph.depths[hph.activeRows] = depth hph.activeRows++ return nil } func (hph *HexPatriciaHashed) needFolding(hashedKey []byte) bool { return !bytes.HasPrefix(hashedKey, hph.currentKey[:hph.currentKeyLen]) } // The purpose of fold is to reduce hph.currentKey[:hph.currentKeyLen]. It should be invoked // until that current key becomes a prefix of hashedKey that we will proccess next // (in other words until the needFolding function returns 0) func (hph *HexPatriciaHashed) fold() (branchData BranchData, updateKey []byte, err error) { updateKeyLen := hph.currentKeyLen if hph.activeRows == 0 { return nil, nil, fmt.Errorf("cannot fold - no active rows") } if hph.trace { fmt.Printf("fold: activeRows: %d, currentKey: [%x], touchMap: %016b, afterMap: %016b\n", hph.activeRows, hph.currentKey[:hph.currentKeyLen], hph.touchMap[hph.activeRows-1], hph.afterMap[hph.activeRows-1]) } // Move information to the row above row := hph.activeRows - 1 var upCell *Cell var col int var upDepth int if hph.activeRows == 1 { if hph.trace { fmt.Printf("upcell is root\n") } upCell = &hph.root } else { upDepth = hph.depths[hph.activeRows-2] col = int(hph.currentKey[upDepth-1]) if hph.trace { fmt.Printf("upcell is (%d x %x), upDepth=%d\n", row-1, col, upDepth) } upCell = &hph.grid[row-1][col] } depth := hph.depths[hph.activeRows-1] updateKey = hexToCompact(hph.currentKey[:updateKeyLen]) partsCount := bits.OnesCount16(hph.afterMap[row]) if hph.trace { fmt.Printf("touchMap[%d]=%016b, afterMap[%d]=%016b\n", row, hph.touchMap[row], row, hph.afterMap[row]) } switch partsCount { case 0: // Everything deleted if hph.touchMap[row] != 0 { if row == 0 { // Root is deleted because the tree is empty hph.rootTouched = true hph.rootPresent = false } else if upDepth == 64 { // Special case - all storage items of an account have been deleted, but it does not automatically delete the account, just makes it empty storage // Therefore we are not propagating deletion upwards, but turn it into a modification hph.touchMap[row-1] |= (uint16(1) << col) } else { // Deletion is propagated upwards hph.touchMap[row-1] |= (uint16(1) << col) hph.afterMap[row-1] &^= (uint16(1) << col) } } upCell.hl = 0 upCell.apl = 0 upCell.spl = 0 upCell.extLen = 0 upCell.downHashedLen = 0 if hph.branchBefore[row] { branchData, _, err = EncodeBranch(0, hph.touchMap[row], 0, func(nibble int, skip bool) (*Cell, error) { return nil, nil }) if err != nil { return nil, updateKey, fmt.Errorf("failed to encode leaf node update: %w", err) } } hph.activeRows-- if upDepth > 0 { hph.currentKeyLen = upDepth - 1 } else { hph.currentKeyLen = 0 } case 1: // Leaf or extension node if hph.touchMap[row] != 0 { // any modifications if row == 0 { hph.rootTouched = true } else { // Modifiction is propagated upwards hph.touchMap[row-1] |= (uint16(1) << col) } } nibble := bits.TrailingZeros16(hph.afterMap[row]) cell := &hph.grid[row][nibble] upCell.extLen = 0 upCell.fillFromLowerCell(cell, depth, hph.currentKey[upDepth:hph.currentKeyLen], nibble) // Delete if it existed if hph.branchBefore[row] { //branchData, _, err = hph.EncodeBranchDirectAccess(0, row, depth) branchData, _, err = EncodeBranch(0, hph.touchMap[row], 0, func(nibble int, skip bool) (*Cell, error) { return nil, nil }) if err != nil { return nil, updateKey, fmt.Errorf("failed to encode leaf node update: %w", err) } } hph.activeRows-- if upDepth > 0 { hph.currentKeyLen = upDepth - 1 } else { hph.currentKeyLen = 0 } default: // Branch node if hph.touchMap[row] != 0 { // any modifications if row == 0 { hph.rootTouched = true } else { // Modifiction is propagated upwards hph.touchMap[row-1] |= (uint16(1) << col) } } bitmap := hph.touchMap[row] & hph.afterMap[row] if !hph.branchBefore[row] { // There was no branch node before, so we need to touch even the singular child that existed hph.touchMap[row] |= hph.afterMap[row] bitmap |= hph.afterMap[row] } // Calculate total length of all hashes totalBranchLen := 17 - partsCount // For every empty cell, one byte for bitset, j := hph.afterMap[row], 0; bitset != 0; j++ { bit := bitset & -bitset nibble := bits.TrailingZeros16(bit) cell := &hph.grid[row][nibble] totalBranchLen += hph.computeCellHashLen(cell, depth) bitset ^= bit } hph.keccak2.Reset() pt := rlp.GenerateStructLen(hph.hashAuxBuffer[:], totalBranchLen) if _, err := hph.keccak2.Write(hph.hashAuxBuffer[:pt]); err != nil { return nil, nil, err } b := [...]byte{0x80} cellGetter := func(nibble int, skip bool) (*Cell, error) { if skip { if _, err := hph.keccak2.Write(b[:]); err != nil { return nil, fmt.Errorf("failed to write empty nibble to hash: %w", err) } if hph.trace { fmt.Printf("%x: empty(%d,%x)\n", nibble, row, nibble) } return nil, nil } cell := &hph.grid[row][nibble] cellHash, err := hph.computeCellHash(cell, depth, hph.hashAuxBuffer[:0]) if err != nil { return nil, err } if hph.trace { fmt.Printf("%x: computeCellHash(%d,%x,depth=%d)=[%x]\n", nibble, row, nibble, depth, cellHash) } if _, err := hph.keccak2.Write(cellHash); err != nil { return nil, err } return cell, nil } var lastNibble int var err error _ = cellGetter //branchData, lastNibble, err = hph.EncodeBranchDirectAccess(bitmap, row, depth, branchData) branchData, lastNibble, err = EncodeBranch(bitmap, hph.touchMap[row], hph.afterMap[row], cellGetter) if err != nil { return nil, nil, fmt.Errorf("failed to encode branch update: %w", err) } for i := lastNibble; i < 17; i++ { if _, err := hph.keccak2.Write(b[:]); err != nil { return nil, nil, err } if hph.trace { fmt.Printf("%x: empty(%d,%x)\n", i, row, i) } } upCell.extLen = depth - upDepth - 1 upCell.downHashedLen = upCell.extLen if upCell.extLen > 0 { copy(upCell.extension[:], hph.currentKey[upDepth:hph.currentKeyLen]) copy(upCell.downHashedKey[:], hph.currentKey[upDepth:hph.currentKeyLen]) } if depth < 64 { upCell.apl = 0 } upCell.spl = 0 upCell.hl = 32 if _, err := hph.keccak2.Read(upCell.h[:]); err != nil { return nil, nil, err } if hph.trace { fmt.Printf("} [%x]\n", upCell.h[:]) } hph.activeRows-- if upDepth > 0 { hph.currentKeyLen = upDepth - 1 } else { hph.currentKeyLen = 0 } } if branchData != nil { if hph.trace { fmt.Printf("fold: update key: %x, branchData: [%x]\n", CompactedKeyToHex(updateKey), branchData) } } return branchData, updateKey, nil } func (hph *HexPatriciaHashed) deleteCell(hashedKey []byte) { if hph.trace { fmt.Printf("deleteCell, activeRows = %d\n", hph.activeRows) } var cell *Cell if hph.activeRows == 0 { // Remove the root cell = &hph.root hph.rootTouched = true hph.rootPresent = false } else { row := hph.activeRows - 1 if hph.depths[row] < len(hashedKey) { if hph.trace { fmt.Printf("deleteCell skipping spurious delete depth=%d, len(hashedKey)=%d\n", hph.depths[row], len(hashedKey)) } return } col := int(hashedKey[hph.currentKeyLen]) cell = &hph.grid[row][col] if hph.afterMap[row]&(uint16(1)< 0; unfolding = hph.needUnfolding(hashedKey) { if err := hph.unfold(hashedKey, unfolding); err != nil { return nil, nil, fmt.Errorf("unfold: %w", err) } } // Update the cell stagedCell.fillEmpty() if len(plainKey) == hph.accountKeyLen { if err := hph.accountFn(plainKey, stagedCell); err != nil { return nil, nil, fmt.Errorf("accountFn for key %x failed: %w", plainKey, err) } if !stagedCell.Delete { cell := hph.updateCell(plainKey, hashedKey) cell.setAccountFields(stagedCell.CodeHash[:], &stagedCell.Balance, stagedCell.Nonce) if hph.trace { fmt.Printf("accountFn reading key %x => balance=%v nonce=%v codeHash=%x\n", cell.apk, cell.Balance.Uint64(), cell.Nonce, cell.CodeHash) } } } else { if err = hph.storageFn(plainKey, stagedCell); err != nil { return nil, nil, fmt.Errorf("storageFn for key %x failed: %w", plainKey, err) } if !stagedCell.Delete { hph.updateCell(plainKey, hashedKey).setStorage(stagedCell.Storage[:stagedCell.StorageLen]) if hph.trace { fmt.Printf("storageFn reading key %x => %x\n", plainKey, stagedCell.Storage[:stagedCell.StorageLen]) } } } if stagedCell.Delete { if hph.trace { fmt.Printf("delete cell %x hash %x\n", plainKey, hashedKey) } hph.deleteCell(hashedKey) } } // Folding everything up to the root for hph.activeRows > 0 { if branchData, updateKey, err := hph.fold(); err != nil { return nil, nil, fmt.Errorf("final fold: %w", err) } else if branchData != nil { branchNodeUpdates[string(updateKey)] = branchData } } rootHash, err = hph.RootHash() if err != nil { return nil, branchNodeUpdates, fmt.Errorf("root hash evaluation failed: %w", err) } return rootHash, branchNodeUpdates, nil } func (hph *HexPatriciaHashed) SetTrace(trace bool) { hph.trace = trace } func (hph *HexPatriciaHashed) Variant() TrieVariant { return VariantHexPatriciaTrie } // Reset allows HexPatriciaHashed instance to be reused for the new commitment calculation func (hph *HexPatriciaHashed) Reset() { hph.rootChecked = false hph.root.hl = 0 hph.root.downHashedLen = 0 hph.root.apl = 0 hph.root.spl = 0 hph.root.extLen = 0 copy(hph.root.CodeHash[:], EmptyCodeHash) hph.root.StorageLen = 0 hph.root.Balance.Clear() hph.root.Nonce = 0 hph.rootTouched = false hph.rootPresent = true } func (hph *HexPatriciaHashed) ResetFns( branchFn func(prefix []byte) ([]byte, error), accountFn func(plainKey []byte, cell *Cell) error, storageFn func(plainKey []byte, cell *Cell) error, ) { hph.branchFn = branchFn hph.accountFn = accountFn hph.storageFn = storageFn } type stateRootFlag int8 var ( stateRootPresent stateRootFlag = 1 stateRootChecked stateRootFlag = 2 stateRootTouched stateRootFlag = 4 ) func (s *state) Encode(buf []byte) ([]byte, error) { var rootFlags stateRootFlag if s.RootPresent { rootFlags |= stateRootPresent } if s.RootChecked { rootFlags |= stateRootChecked } if s.RootTouched { rootFlags |= stateRootTouched } ee := bytes.NewBuffer(buf) if err := binary.Write(ee, binary.BigEndian, s.CurrentKeyLen); err != nil { return nil, fmt.Errorf("encode currentKeyLen: %w", err) } if err := binary.Write(ee, binary.BigEndian, int8(rootFlags)); err != nil { return nil, fmt.Errorf("encode rootFlags: %w", err) } if n, err := ee.Write(s.CurrentKey[:]); err != nil || n != len(s.CurrentKey) { return nil, fmt.Errorf("encode currentKey: %w", err) } if err := binary.Write(ee, binary.BigEndian, uint16(len(s.Root))); err != nil { return nil, fmt.Errorf("encode root len: %w", err) } if n, err := ee.Write(s.Root); err != nil || n != len(s.Root) { return nil, fmt.Errorf("encode root: %w", err) } d := make([]byte, len(s.Depths)) for i := 0; i < len(s.Depths); i++ { d[i] = byte(s.Depths[i]) } if n, err := ee.Write(d); err != nil || n != len(s.Depths) { return nil, fmt.Errorf("encode depths: %w", err) } if err := binary.Write(ee, binary.BigEndian, s.TouchMap); err != nil { return nil, fmt.Errorf("encode touchMap: %w", err) } if err := binary.Write(ee, binary.BigEndian, s.AfterMap); err != nil { return nil, fmt.Errorf("encode afterMap: %w", err) } var before1, before2 uint64 for i := 0; i < 64; i++ { if s.BranchBefore[i] { before1 |= 1 << i } } for i, j := 64, 0; i < 128; i, j = i+1, j+1 { if s.BranchBefore[i] { before2 |= 1 << j } } if err := binary.Write(ee, binary.BigEndian, before1); err != nil { return nil, fmt.Errorf("encode branchBefore_1: %w", err) } if err := binary.Write(ee, binary.BigEndian, before2); err != nil { return nil, fmt.Errorf("encode branchBefore_2: %w", err) } return ee.Bytes(), nil } func (s *state) Decode(buf []byte) error { aux := bytes.NewBuffer(buf) if err := binary.Read(aux, binary.BigEndian, &s.CurrentKeyLen); err != nil { return fmt.Errorf("currentKeyLen: %w", err) } var rootFlags stateRootFlag if err := binary.Read(aux, binary.BigEndian, &rootFlags); err != nil { return fmt.Errorf("rootFlags: %w", err) } if rootFlags&stateRootPresent != 0 { s.RootPresent = true } if rootFlags&stateRootTouched != 0 { s.RootTouched = true } if rootFlags&stateRootChecked != 0 { s.RootChecked = true } if n, err := aux.Read(s.CurrentKey[:]); err != nil || n != 128 { return fmt.Errorf("currentKey: %w", err) } var rootSize uint16 if err := binary.Read(aux, binary.BigEndian, &rootSize); err != nil { return fmt.Errorf("root size: %w", err) } s.Root = make([]byte, rootSize) if _, err := aux.Read(s.Root); err != nil { return fmt.Errorf("root: %w", err) } d := make([]byte, len(s.Depths)) if err := binary.Read(aux, binary.BigEndian, &d); err != nil { return fmt.Errorf("depths: %w", err) } for i := 0; i < len(s.Depths); i++ { s.Depths[i] = int(d[i]) } if err := binary.Read(aux, binary.BigEndian, &s.TouchMap); err != nil { return fmt.Errorf("touchMap: %w", err) } if err := binary.Read(aux, binary.BigEndian, &s.AfterMap); err != nil { return fmt.Errorf("afterMap: %w", err) } var branch1, branch2 uint64 if err := binary.Read(aux, binary.BigEndian, &branch1); err != nil { return fmt.Errorf("branchBefore1: %w", err) } if err := binary.Read(aux, binary.BigEndian, &branch2); err != nil { return fmt.Errorf("branchBefore2: %w", err) } for i := 0; i < 64; i++ { if branch1&(1< 0 buf := make([]byte, bufLen) buf[0] = zeroByte return decodeKey(key[keyPos:], buf) } func makeCompactZeroByte(key []byte) (compactZeroByte byte, keyPos, keyLen int) { keyLen = len(key) if hasTerm(key) { keyLen-- compactZeroByte = 0x20 } var firstNibble byte if len(key) > 0 { firstNibble = key[0] } if keyLen&1 == 1 { compactZeroByte |= 0x10 | firstNibble // Odd: (1<<4) + first nibble keyPos++ } return } func decodeKey(key, buf []byte) []byte { keyLen := len(key) if hasTerm(key) { keyLen-- } for keyIndex, bufIndex := 0, 1; keyIndex < keyLen; keyIndex, bufIndex = keyIndex+2, bufIndex+1 { if keyIndex == keyLen-1 { buf[bufIndex] = buf[bufIndex] & 0x0f } else { buf[bufIndex] = key[keyIndex+1] } buf[bufIndex] |= key[keyIndex] << 4 } return buf } func CompactedKeyToHex(compact []byte) []byte { if len(compact) == 0 { return compact } base := keybytesToHexNibbles(compact) // delete terminator flag if base[0] < 2 { base = base[:len(base)-1] } // apply odd flag chop := 2 - base[0]&1 return base[chop:] } func keybytesToHexNibbles(str []byte) []byte { l := len(str)*2 + 1 var nibbles = make([]byte, l) for i, b := range str { nibbles[i*2] = b / 16 nibbles[i*2+1] = b % 16 } nibbles[l-1] = 16 return nibbles } // hasTerm returns whether a hex key has the terminator flag. func hasTerm(s []byte) bool { return len(s) > 0 && s[len(s)-1] == 16 } func commonPrefixLen(b1, b2 []byte) int { var i int for i = 0; i < len(b1) && i < len(b2); i++ { if b1[i] != b2[i] { break } } return i } func (hph *HexPatriciaHashed) ProcessUpdates(plainKeys, hashedKeys [][]byte, updates []Update) (rootHash []byte, branchNodeUpdates map[string]BranchData, err error) { branchNodeUpdates = make(map[string]BranchData) for i, plainKey := range plainKeys { hashedKey := hashedKeys[i] if hph.trace { fmt.Printf("plainKey=[%x], hashedKey=[%x], currentKey=[%x]\n", plainKey, hashedKey, hph.currentKey[:hph.currentKeyLen]) } // Keep folding until the currentKey is the prefix of the key we modify for hph.needFolding(hashedKey) { if branchData, updateKey, err := hph.fold(); err != nil { return nil, nil, fmt.Errorf("fold: %w", err) } else if branchData != nil { branchNodeUpdates[string(updateKey)] = branchData } } // Now unfold until we step on an empty cell for unfolding := hph.needUnfolding(hashedKey); unfolding > 0; unfolding = hph.needUnfolding(hashedKey) { if err := hph.unfold(hashedKey, unfolding); err != nil { return nil, nil, fmt.Errorf("unfold: %w", err) } } update := updates[i] // Update the cell if update.Flags == DeleteUpdate { hph.deleteCell(hashedKey) if hph.trace { fmt.Printf("key %x deleted\n", plainKey) } } else { cell := hph.updateCell(plainKey, hashedKey) if hph.trace { fmt.Printf("accountFn updated key %x =>", plainKey) } if update.Flags&BalanceUpdate != 0 { if hph.trace { fmt.Printf(" balance=%d", update.Balance.Uint64()) } cell.Balance.Set(&update.Balance) } if update.Flags&NonceUpdate != 0 { if hph.trace { fmt.Printf(" nonce=%d", update.Nonce) } cell.Nonce = update.Nonce } if update.Flags&CodeUpdate != 0 { if hph.trace { fmt.Printf(" codeHash=%x", update.CodeHashOrStorage) } copy(cell.CodeHash[:], update.CodeHashOrStorage[:]) } if hph.trace { fmt.Printf("\n") } if update.Flags&StorageUpdate != 0 { cell.setStorage(update.CodeHashOrStorage[:update.ValLength]) if hph.trace { fmt.Printf("\rstorageFn filled key %x => %x\n", plainKey, update.CodeHashOrStorage[:update.ValLength]) } } } } // Folding everything up to the root for hph.activeRows > 0 { if branchData, updateKey, err := hph.fold(); err != nil { return nil, nil, fmt.Errorf("final fold: %w", err) } else if branchData != nil { branchNodeUpdates[string(updateKey)] = branchData } } rootHash, err = hph.RootHash() if err != nil { return nil, branchNodeUpdates, fmt.Errorf("root hash evaluation failed: %w", err) } return rootHash, branchNodeUpdates, nil } // nolint // Hashes provided key and expands resulting hash into nibbles (each byte split into two nibbles by 4 bits) func (hph *HexPatriciaHashed) hashAndNibblizeKey(key []byte) []byte { hashedKey := make([]byte, length.Hash) hph.keccak.Reset() hph.keccak.Write(key[:length.Addr]) copy(hashedKey[:length.Hash], hph.keccak.Sum(nil)) if len(key[length.Addr:]) > 0 { hashedKey = append(hashedKey, make([]byte, length.Hash)...) hph.keccak.Reset() hph.keccak.Write(key[length.Addr:]) copy(hashedKey[length.Hash:], hph.keccak.Sum(nil)) } nibblized := make([]byte, len(hashedKey)*2) for i, b := range hashedKey { nibblized[i*2] = (b >> 4) & 0xf nibblized[i*2+1] = b & 0xf } return nibblized } type UpdateFlags uint8 const ( CodeUpdate UpdateFlags = 1 DeleteUpdate UpdateFlags = 2 BalanceUpdate UpdateFlags = 4 NonceUpdate UpdateFlags = 8 StorageUpdate UpdateFlags = 16 ) func (uf UpdateFlags) String() string { var sb strings.Builder if uf == DeleteUpdate { sb.WriteString("Delete") } else { if uf&BalanceUpdate != 0 { sb.WriteString("+Balance") } if uf&NonceUpdate != 0 { sb.WriteString("+Nonce") } if uf&CodeUpdate != 0 { sb.WriteString("+Code") } if uf&StorageUpdate != 0 { sb.WriteString("+Storage") } } return sb.String() } type Update struct { Flags UpdateFlags Balance uint256.Int Nonce uint64 CodeHashOrStorage [length.Hash]byte ValLength int } func (u *Update) DecodeForStorage(enc []byte) { u.Nonce = 0 u.Balance.Clear() copy(u.CodeHashOrStorage[:], EmptyCodeHash) pos := 0 nonceBytes := int(enc[pos]) pos++ if nonceBytes > 0 { u.Nonce = bytesToUint64(enc[pos : pos+nonceBytes]) pos += nonceBytes } balanceBytes := int(enc[pos]) pos++ if balanceBytes > 0 { u.Balance.SetBytes(enc[pos : pos+balanceBytes]) pos += balanceBytes } codeHashBytes := int(enc[pos]) pos++ if codeHashBytes > 0 { copy(u.CodeHashOrStorage[:], enc[pos:pos+codeHashBytes]) } } func (u *Update) Encode(buf []byte, numBuf []byte) []byte { buf = append(buf, byte(u.Flags)) if u.Flags&BalanceUpdate != 0 { buf = append(buf, byte(u.Balance.ByteLen())) buf = append(buf, u.Balance.Bytes()...) } if u.Flags&NonceUpdate != 0 { n := binary.PutUvarint(numBuf, u.Nonce) buf = append(buf, numBuf[:n]...) } if u.Flags&CodeUpdate != 0 { buf = append(buf, u.CodeHashOrStorage[:]...) } if u.Flags&StorageUpdate != 0 { n := binary.PutUvarint(numBuf, uint64(u.ValLength)) buf = append(buf, numBuf[:n]...) if u.ValLength > 0 { buf = append(buf, u.CodeHashOrStorage[:u.ValLength]...) } } return buf } func (u *Update) Decode(buf []byte, pos int) (int, error) { if len(buf) < pos+1 { return 0, fmt.Errorf("decode Update: buffer too small for flags") } u.Flags = UpdateFlags(buf[pos]) pos++ if u.Flags&BalanceUpdate != 0 { if len(buf) < pos+1 { return 0, fmt.Errorf("decode Update: buffer too small for balance len") } balanceLen := int(buf[pos]) pos++ if len(buf) < pos+balanceLen { return 0, fmt.Errorf("decode Update: buffer too small for balance") } u.Balance.SetBytes(buf[pos : pos+balanceLen]) pos += balanceLen } if u.Flags&NonceUpdate != 0 { var n int u.Nonce, n = binary.Uvarint(buf[pos:]) if n == 0 { return 0, fmt.Errorf("decode Update: buffer too small for nonce") } if n < 0 { return 0, fmt.Errorf("decode Update: nonce overflow") } pos += n } if u.Flags&CodeUpdate != 0 { if len(buf) < pos+32 { return 0, fmt.Errorf("decode Update: buffer too small for codeHash") } copy(u.CodeHashOrStorage[:], buf[pos:pos+32]) pos += 32 } if u.Flags&StorageUpdate != 0 { l, n := binary.Uvarint(buf[pos:]) if n == 0 { return 0, fmt.Errorf("decode Update: buffer too small for storage len") } if n < 0 { return 0, fmt.Errorf("decode Update: storage lee overflow") } pos += n if len(buf) < pos+int(l) { return 0, fmt.Errorf("decode Update: buffer too small for storage") } u.ValLength = int(l) copy(u.CodeHashOrStorage[:], buf[pos:pos+int(l)]) pos += int(l) } return pos, nil } func (u *Update) String() string { var sb strings.Builder sb.WriteString(fmt.Sprintf("Flags: [%s]", u.Flags)) if u.Flags&BalanceUpdate != 0 { sb.WriteString(fmt.Sprintf(", Balance: [%d]", &u.Balance)) } if u.Flags&NonceUpdate != 0 { sb.WriteString(fmt.Sprintf(", Nonce: [%d]", u.Nonce)) } if u.Flags&CodeUpdate != 0 { sb.WriteString(fmt.Sprintf(", CodeHash: [%x]", u.CodeHashOrStorage)) } if u.Flags&StorageUpdate != 0 { sb.WriteString(fmt.Sprintf(", Storage: [%x]", u.CodeHashOrStorage[:u.ValLength])) } return sb.String() }