// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package discv5 import ( "bytes" "crypto/ecdsa" "errors" "fmt" "net" "time" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/crypto" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/p2p/netutil" "github.com/ledgerwatch/turbo-geth/rlp" ) const Version = 4 // Errors var ( errPacketTooSmall = errors.New("too small") errBadPrefix = errors.New("bad prefix") ) // Timeouts const ( respTimeout = 500 * time.Millisecond expiration = 20 * time.Second ) // RPC request structures type ( ping struct { Version uint From, To rpcEndpoint Expiration uint64 // v5 Topics []Topic // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // pong is the reply to ping. pong struct { // This field should mirror the UDP envelope address // of the ping packet, which provides a way to discover the // the external address (after NAT). To rpcEndpoint ReplyTok []byte // This contains the hash of the ping packet. Expiration uint64 // Absolute timestamp at which the packet becomes invalid. // v5 TopicHash common.Hash TicketSerial uint32 WaitPeriods []uint32 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // findnode is a query for nodes close to the given target. findnode struct { Target NodeID // doesn't need to be an actual public key Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // findnode is a query for nodes close to the given target. findnodeHash struct { Target common.Hash Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // reply to findnode neighbors struct { Nodes []rpcNode Expiration uint64 // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } topicRegister struct { Topics []Topic Idx uint Pong []byte } topicQuery struct { Topic Topic Expiration uint64 } // reply to topicQuery topicNodes struct { Echo common.Hash Nodes []rpcNode } rpcNode struct { IP net.IP // len 4 for IPv4 or 16 for IPv6 UDP uint16 // for discovery protocol TCP uint16 // for RLPx protocol ID NodeID } rpcEndpoint struct { IP net.IP // len 4 for IPv4 or 16 for IPv6 UDP uint16 // for discovery protocol TCP uint16 // for RLPx protocol } ) var ( versionPrefix = []byte("temporary discovery v5") versionPrefixSize = len(versionPrefix) sigSize = 520 / 8 headSize = versionPrefixSize + sigSize // space of packet frame data ) // Neighbors replies are sent across multiple packets to // stay below the 1280 byte limit. We compute the maximum number // of entries by stuffing a packet until it grows too large. var maxNeighbors = func() int { p := neighbors{Expiration: ^uint64(0)} maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)} for n := 0; ; n++ { p.Nodes = append(p.Nodes, maxSizeNode) size, _, err := rlp.EncodeToReader(p) if err != nil { // If this ever happens, it will be caught by the unit tests. panic("cannot encode: " + err.Error()) } if headSize+size+1 >= 1280 { return n } } }() var maxTopicNodes = func() int { p := topicNodes{} maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)} for n := 0; ; n++ { p.Nodes = append(p.Nodes, maxSizeNode) size, _, err := rlp.EncodeToReader(p) if err != nil { // If this ever happens, it will be caught by the unit tests. panic("cannot encode: " + err.Error()) } if headSize+size+1 >= 1280 { return n } } }() func makeEndpoint(addr *net.UDPAddr, tcpPort uint16) rpcEndpoint { ip := addr.IP.To4() if ip == nil { ip = addr.IP.To16() } return rpcEndpoint{IP: ip, UDP: uint16(addr.Port), TCP: tcpPort} } func nodeFromRPC(sender *net.UDPAddr, rn rpcNode) (*Node, error) { if err := netutil.CheckRelayIP(sender.IP, rn.IP); err != nil { return nil, err } n := NewNode(rn.ID, rn.IP, rn.UDP, rn.TCP) err := n.validateComplete() return n, err } func nodeToRPC(n *Node) rpcNode { return rpcNode{ID: n.ID, IP: n.IP, UDP: n.UDP, TCP: n.TCP} } type ingressPacket struct { remoteID NodeID remoteAddr *net.UDPAddr ev nodeEvent hash []byte data interface{} // one of the RPC structs rawData []byte } type conn interface { ReadFromUDP(b []byte) (n int, addr *net.UDPAddr, err error) WriteToUDP(b []byte, addr *net.UDPAddr) (n int, err error) Close() error LocalAddr() net.Addr } // udp implements the RPC protocol. type udp struct { conn conn priv *ecdsa.PrivateKey ourEndpoint rpcEndpoint net *Network } // ListenUDP returns a new table that listens for UDP packets on laddr. func ListenUDP(priv *ecdsa.PrivateKey, conn conn, nodeDBPath string, netrestrict *netutil.Netlist) (*Network, error) { realaddr := conn.LocalAddr().(*net.UDPAddr) transport, err := listenUDP(priv, conn, realaddr) if err != nil { return nil, err } net, err := newNetwork(transport, priv.PublicKey, nodeDBPath, netrestrict) if err != nil { return nil, err } log.Info("UDP listener up", "net", net.tab.self) transport.net = net go transport.readLoop() return net, nil } func listenUDP(priv *ecdsa.PrivateKey, conn conn, realaddr *net.UDPAddr) (*udp, error) { return &udp{conn: conn, priv: priv, ourEndpoint: makeEndpoint(realaddr, uint16(realaddr.Port))}, nil } func (t *udp) localAddr() *net.UDPAddr { return t.conn.LocalAddr().(*net.UDPAddr) } func (t *udp) Close() { t.conn.Close() } func (t *udp) send(remote *Node, ptype nodeEvent, data interface{}) (hash []byte) { hash, _ = t.sendPacket(remote.ID, remote.addr(), byte(ptype), data) return hash } func (t *udp) sendPing(remote *Node, toaddr *net.UDPAddr, topics []Topic) (hash []byte) { hash, _ = t.sendPacket(remote.ID, toaddr, byte(pingPacket), ping{ Version: Version, From: t.ourEndpoint, To: makeEndpoint(toaddr, uint16(toaddr.Port)), // TODO: maybe use known TCP port from DB Expiration: uint64(time.Now().Add(expiration).Unix()), Topics: topics, }) return hash } func (t *udp) sendNeighbours(remote *Node, results []*Node) { // Send neighbors in chunks with at most maxNeighbors per packet // to stay below the 1280 byte limit. p := neighbors{Expiration: uint64(time.Now().Add(expiration).Unix())} for i, result := range results { p.Nodes = append(p.Nodes, nodeToRPC(result)) if len(p.Nodes) == maxNeighbors || i == len(results)-1 { t.sendPacket(remote.ID, remote.addr(), byte(neighborsPacket), p) p.Nodes = p.Nodes[:0] } } } func (t *udp) sendFindnodeHash(remote *Node, target common.Hash) { t.sendPacket(remote.ID, remote.addr(), byte(findnodeHashPacket), findnodeHash{ Target: target, Expiration: uint64(time.Now().Add(expiration).Unix()), }) } func (t *udp) sendTopicRegister(remote *Node, topics []Topic, idx int, pong []byte) { t.sendPacket(remote.ID, remote.addr(), byte(topicRegisterPacket), topicRegister{ Topics: topics, Idx: uint(idx), Pong: pong, }) } func (t *udp) sendTopicNodes(remote *Node, queryHash common.Hash, nodes []*Node) { p := topicNodes{Echo: queryHash} var sent bool for _, result := range nodes { if result.IP.Equal(t.net.tab.self.IP) || netutil.CheckRelayIP(remote.IP, result.IP) == nil { p.Nodes = append(p.Nodes, nodeToRPC(result)) } if len(p.Nodes) == maxTopicNodes { t.sendPacket(remote.ID, remote.addr(), byte(topicNodesPacket), p) p.Nodes = p.Nodes[:0] sent = true } } if !sent || len(p.Nodes) > 0 { t.sendPacket(remote.ID, remote.addr(), byte(topicNodesPacket), p) } } func (t *udp) sendPacket(toid NodeID, toaddr *net.UDPAddr, ptype byte, req interface{}) (hash []byte, err error) { //fmt.Println("sendPacket", nodeEvent(ptype), toaddr.String(), toid.String()) packet, hash, err := encodePacket(t.priv, ptype, req) if err != nil { //fmt.Println(err) return hash, err } log.Trace(fmt.Sprintf(">>> %v to %x@%v", nodeEvent(ptype), toid[:8], toaddr)) if nbytes, err := t.conn.WriteToUDP(packet, toaddr); err != nil { log.Trace(fmt.Sprint("UDP send failed:", err)) } else { egressTrafficMeter.Mark(int64(nbytes)) } //fmt.Println(err) return hash, err } // zeroed padding space for encodePacket. var headSpace = make([]byte, headSize) func encodePacket(priv *ecdsa.PrivateKey, ptype byte, req interface{}) (p, hash []byte, err error) { b := new(bytes.Buffer) b.Write(headSpace) b.WriteByte(ptype) if err := rlp.Encode(b, req); err != nil { log.Error(fmt.Sprint("error encoding packet:", err)) return nil, nil, err } packet := b.Bytes() sig, err := crypto.Sign(crypto.Keccak256(packet[headSize:]), priv) if err != nil { log.Error(fmt.Sprint("could not sign packet:", err)) return nil, nil, err } copy(packet, versionPrefix) copy(packet[versionPrefixSize:], sig) hash = crypto.Keccak256(packet[versionPrefixSize:]) return packet, hash, nil } // readLoop runs in its own goroutine. it injects ingress UDP packets // into the network loop. func (t *udp) readLoop() { defer t.conn.Close() // Discovery packets are defined to be no larger than 1280 bytes. // Packets larger than this size will be cut at the end and treated // as invalid because their hash won't match. buf := make([]byte, 1280) for { nbytes, from, err := t.conn.ReadFromUDP(buf) ingressTrafficMeter.Mark(int64(nbytes)) if netutil.IsTemporaryError(err) { // Ignore temporary read errors. log.Debug(fmt.Sprintf("Temporary read error: %v", err)) continue } else if err != nil { // Shut down the loop for permament errors. log.Debug(fmt.Sprintf("Read error: %v", err)) return } t.handlePacket(from, buf[:nbytes]) } } func (t *udp) handlePacket(from *net.UDPAddr, buf []byte) error { pkt := ingressPacket{remoteAddr: from} if err := decodePacket(buf, &pkt); err != nil { log.Debug(fmt.Sprintf("Bad packet from %v: %v", from, err)) //fmt.Println("bad packet", err) return err } t.net.reqReadPacket(pkt) return nil } func decodePacket(buffer []byte, pkt *ingressPacket) error { if len(buffer) < headSize+1 { return errPacketTooSmall } buf := make([]byte, len(buffer)) copy(buf, buffer) prefix, sig, sigdata := buf[:versionPrefixSize], buf[versionPrefixSize:headSize], buf[headSize:] if !bytes.Equal(prefix, versionPrefix) { return errBadPrefix } fromID, err := recoverNodeID(crypto.Keccak256(buf[headSize:]), sig) if err != nil { return err } pkt.rawData = buf pkt.hash = crypto.Keccak256(buf[versionPrefixSize:]) pkt.remoteID = fromID switch pkt.ev = nodeEvent(sigdata[0]); pkt.ev { case pingPacket: pkt.data = new(ping) case pongPacket: pkt.data = new(pong) case findnodePacket: pkt.data = new(findnode) case neighborsPacket: pkt.data = new(neighbors) case findnodeHashPacket: pkt.data = new(findnodeHash) case topicRegisterPacket: pkt.data = new(topicRegister) case topicQueryPacket: pkt.data = new(topicQuery) case topicNodesPacket: pkt.data = new(topicNodes) default: return fmt.Errorf("unknown packet type: %d", sigdata[0]) } s := rlp.NewStream(bytes.NewReader(sigdata[1:]), 0) err = s.Decode(pkt.data) return err }