// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie // Experimental code for separating data and structural information import ( "bytes" "encoding/binary" "fmt" "math/big" "sort" "testing" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/core/types/accounts" "github.com/ledgerwatch/turbo-geth/crypto" ) func TestV2HashBuilding(t *testing.T) { var keys []string for b := uint32(0); b < 100000; b++ { var preimage [4]byte binary.BigEndian.PutUint32(preimage[:], b) key := crypto.Keccak256(preimage[:])[:8] keys = append(keys, string(key)) } sort.Strings(keys) for i, key := range keys { if i > 0 && keys[i-1] == key { fmt.Printf("Duplicate!\n") } } tr := New(common.Hash{}) valueLong := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345") valueShort := []byte("VAL") for i, key := range keys { if i%2 == 0 { tr.Update([]byte(key), valueNode(valueLong), 0) } else { tr.Update([]byte(key), valueNode(valueShort), 0) } } trieHash := tr.Hash() hb := NewHashBuilder(false) var succ bytes.Buffer var curr OneBytesTape var valueTape OneBytesTape hb.SetKeyTape(&curr) hb.SetValueTape(NewRlpSerializableBytesTape(&valueTape)) var groups []uint16 for i, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { var err error groups, err = GenStructStep(0, func(_ []byte) bool { return true }, false, false, curr.Bytes(), succ.Bytes(), hb, groups) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } valueTape.Buffer.Reset() if i%2 == 0 { valueTape.Buffer.Write(valueLong) } else { valueTape.Buffer.Write(valueShort) } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() if _, err := GenStructStep(0, func(_ []byte) bool { return true }, false, false, curr.Bytes(), succ.Bytes(), hb, groups); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } builtHash := hb.rootHash() if trieHash != builtHash { t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } } func TestV2Resolution(t *testing.T) { var keys []string for b := uint32(0); b < 100000; b++ { var preimage [4]byte binary.BigEndian.PutUint32(preimage[:], b) key := crypto.Keccak256(preimage[:])[:8] keys = append(keys, string(key)) } sort.Strings(keys) tr := New(common.Hash{}) value := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345") for _, key := range keys { tr.Update([]byte(key), valueNode(value), 0) } trieHash := tr.Hash() // Choose some keys to be resolved var rs ResolveSet // First, existing keys for i := 0; i < 1000; i += 200 { rs.AddKey([]byte(keys[i])) } // Next, some non-exsiting keys for i := 0; i < 1000; i++ { rs.AddKey(crypto.Keccak256([]byte(keys[i]))[:8]) } hb := NewHashBuilder(false) var succ bytes.Buffer var curr OneBytesTape var valueTape OneBytesTape hb.SetKeyTape(&curr) hb.SetValueTape(NewRlpSerializableBytesTape(&valueTape)) var groups []uint16 for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { var err error groups, err = GenStructStep(0, rs.HashOnly, false, false, curr.Bytes(), succ.Bytes(), hb, groups) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } valueTape.Buffer.Reset() valueTape.Buffer.Write(value) } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() if _, err := GenStructStep(0, rs.HashOnly, false, false, curr.Bytes(), succ.Bytes(), hb, groups); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } tr1 := New(common.Hash{}) tr1.root = hb.root() builtHash := hb.rootHash() if trieHash != builtHash { t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } // Check the availability of the resolved keys for _, hex := range rs.hexes { key := hexToKeybytes(hex) _, found := tr1.Get(key) if !found { t.Errorf("Key %x was not resolved", hex) } } } var streamTests = []struct { aHexKeys []string aBalances []int64 sHexKeys []string sHexValues []string rsHex []string hexesExpected []string aBalancesExpected []int64 sValuesExpected []string hashesExpected []string }{ { aHexKeys: []string{"0x00000000"}, aBalances: []int64{13}, sHexKeys: []string{}, sHexValues: []string{}, rsHex: []string{}, hexesExpected: []string{"0x000000000000000010"}, aBalancesExpected: []int64{13}, sValuesExpected: []string{}, hashesExpected: []string{}, }, { aHexKeys: []string{"0x0000000000000000"}, aBalances: []int64{13}, sHexKeys: []string{"0x00000000000000000100000000000001", "0x00000000000000000020000000000002"}, sHexValues: []string{"0x01", "0x02"}, rsHex: []string{}, hexesExpected: []string{"0x0000000000000000000000000000000010"}, aBalancesExpected: []int64{13}, sValuesExpected: []string{}, hashesExpected: []string{}, }, { aHexKeys: []string{"0x0000000000000000", "0x000f000000000000"}, aBalances: []int64{13, 567}, sHexKeys: []string{"0x00000000000000000100000000000001", "0x00000000000000000020000000000002"}, sHexValues: []string{"0x01", "0x02"}, rsHex: []string{"0x0000000000000000", "0x000f000000000000"}, hexesExpected: []string{"0x0000000000000000000000000000000010", "0000000f00000000000000000000000010"}, aBalancesExpected: []int64{13, 567}, sValuesExpected: []string{}, hashesExpected: []string{}, }, } func TestToStream(t *testing.T) { trace := true for tn, streamTest := range streamTests { if trace { fmt.Printf("Test number %d\n", tn) } tr := New(common.Hash{}) for i, balance := range streamTest.aBalances { account := &accounts.Account{Initialised: true, Balance: *big.NewInt(balance), CodeHash: emptyState} tr.UpdateAccount(common.FromHex(streamTest.aHexKeys[i]), account) } for i, sHexKey := range streamTest.sHexKeys { tr.Update(common.FromHex(sHexKey), common.FromHex(streamTest.sHexValues[i]), 0) } // Important to do the hash calculation here, so that the account nodes are updated // with the correct storage root values trieHash := tr.Hash() rs := NewResolveSet(0) for _, rsItem := range streamTest.rsHex { rs.AddKey(common.FromHex(rsItem)) } s := ToStream(tr, rs, trace) if len(s.hexes) != len(streamTest.hexesExpected) { t.Errorf("length of hexes is %d, expected %d", len(s.hexes), len(streamTest.hexesExpected)) } for i, hex := range s.hexes { if i < len(streamTest.hexesExpected) { hexExpected := common.FromHex(streamTest.hexesExpected[i]) if !bytes.Equal(hex, hexExpected) { t.Errorf("hex[%d] = %x, expected %x", i, hex, hexExpected) } } } if len(s.aValues) != len(streamTest.aBalancesExpected) { t.Errorf("length of aValues is %d, expected %d", len(s.aValues), len(streamTest.aBalancesExpected)) } for i, aValue := range s.aValues { if i < len(streamTest.aBalancesExpected) { balanceExpected := streamTest.aBalancesExpected[i] if aValue.Balance.Int64() != balanceExpected { t.Errorf("balance[%d] = %d, expected %d", i, aValue.Balance.Int64(), balanceExpected) } } } if len(s.sValues) != len(streamTest.sValuesExpected) { t.Errorf("length of sValues is %d, expected %d", len(s.sValues), len(streamTest.sValuesExpected)) } for i, sValue := range s.sValues { if i < len(streamTest.sValuesExpected) { sValueExpected := common.FromHex(streamTest.sValuesExpected[i]) if !bytes.Equal(sValue, sValueExpected) { t.Errorf("sValue[%d] = %x, expected %x", i, sValue, sValueExpected) } } } if len(s.hashes) != len(streamTest.hashesExpected) { t.Errorf("length of hashes is %d, expected %d", len(s.hashes), len(streamTest.hashesExpected)) } for i, hash := range s.hashes { if i < len(streamTest.hashesExpected) { hashExpected := common.HexToHash(streamTest.hashesExpected[i]) if hash != hashExpected { t.Errorf("hash[%d] = %x, expected %x", i, hash, hashExpected) } } } // Check that the hash of the stream is equal to the hash of the trie streamHash, err := StreamHash(s, 8, trace) if trace { fmt.Printf("want:\n%s\n", tr.root.fstring("")) } if err != nil { t.Errorf("unable to compute hash of the stream: %v", err) } if streamHash != trieHash { t.Errorf("stream hash %x != trie hash %x", streamHash, trieHash) } } }