// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie // Experimental code for separating data and structural information import ( "bytes" "encoding/binary" "fmt" "testing" "github.com/ledgerwatch/erigon/common" "github.com/ledgerwatch/erigon/crypto" "github.com/ledgerwatch/erigon/turbo/rlphacks" "github.com/stretchr/testify/require" "golang.org/x/exp/slices" ) func TestV2HashBuilding(t *testing.T) { var keys []string for b := uint32(0); b < 100000; b++ { var preimage [4]byte binary.BigEndian.PutUint32(preimage[:], b) key := crypto.Keccak256(preimage[:])[:8] keys = append(keys, string(key)) } slices.Sort(keys) for i, key := range keys { if i > 0 && keys[i-1] == key { fmt.Printf("Duplicate!\n") } } tr := New(common.Hash{}) valueLong := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345") valueShort := []byte("VAL") for i, key := range keys { if i%2 == 0 { tr.Update([]byte(key), valueLong) } else { tr.Update([]byte(key), valueShort) } } trieHash := tr.Hash() hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var valueTape bytes.Buffer var groups, hasTree, hasHash []uint16 for i, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { var err error groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } valueTape.Reset() if i%2 == 0 { valueTape.Write(valueLong) } else { valueTape.Write(valueShort) } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() if _, _, _, err := GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } builtHash := hb.rootHash() if trieHash != builtHash { t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } } func TestV2Resolution(t *testing.T) { var keys []string for b := uint32(0); b < 100000; b++ { var preimage [4]byte binary.BigEndian.PutUint32(preimage[:], b) key := crypto.Keccak256(preimage[:])[:8] keys = append(keys, string(key)) } slices.Sort(keys) tr := New(common.Hash{}) value := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345") for _, key := range keys { tr.Update([]byte(key), value) } trieHash := tr.Hash() // Choose some keys to be resolved var rl RetainList // First, existing keys for i := 0; i < 1000; i += 200 { rl.AddKey([]byte(keys[i])) } // Next, some non-existing keys for i := 0; i < 1000; i++ { rl.AddKey(crypto.Keccak256([]byte(keys[i]))[:8]) } hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var valueTape bytes.Buffer var groups, hasTree, hasHash []uint16 for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { var err error groups, hasTree, hasHash, err = GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } valueTape.Reset() valueTape.Write(value) } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() if _, _, _, err := GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } tr1 := New(common.Hash{}) tr1.root = hb.root() builtHash := hb.rootHash() if trieHash != builtHash { t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } // Check the availability of the resolved keys for _, hex := range rl.hexes { key := hexToKeybytes(hex) _, found := tr1.Get(key) if !found { t.Errorf("Key %x was not resolved", hex) } } } // In this test, we try to combine both accounts and their storage items in the single // hash builder by tricking the GenStructStep slightly. // For storage items, we will be using the keys which are concatenation of the contract address hash, // incarnation encoding, and the storage location hash. // If we just allow it to be processed natually, then at the end of the processing of all storage // items, we would have entension node which hasTree off at some point, but includes incarnation encoding // in it, which we do not want. To cut it off, we will use the "trick". When we give the last // storage item to the GenStructStep, instead of setting `succ` to the empty slice, indicating that // nothing follows, we will set `succ` to a key which is the concatenation of the address hash, // incarnation encoding, except that the last nibble of the incoding is arbitrarily modified // This will cause the correct extension node to form. // In order to prevent the branch node on top of the extension node, we will need to manipulate // the `groups` array and truncate it to the level of the accounts func TestEmbeddedStorage(t *testing.T) { var accountAddress = common.Address{3, 4, 5, 6} addrHash := crypto.Keccak256(accountAddress[:]) incarnation := make([]byte, 8) binary.BigEndian.PutUint64(incarnation, uint64(2)) var location1 = common.Hash{1} locationKey1 := append(append([]byte{}, addrHash...), crypto.Keccak256(location1[:])...) var location2 = common.Hash{2} locationKey2 := append(append([]byte{}, addrHash...), crypto.Keccak256(location2[:])...) var location3 = common.Hash{3} locationKey3 := append(append([]byte{}, addrHash...), crypto.Keccak256(location3[:])...) var keys = []string{string(locationKey1), string(locationKey2), string(locationKey3)} slices.Sort(keys) tr := New(common.Hash{}) valueShort := []byte("VAL") for _, key := range keys { tr.Update([]byte(key)[common.HashLength:], valueShort) } trieHash := tr.Hash() hb := NewHashBuilder(true) var succ bytes.Buffer var curr bytes.Buffer var groups, hasTree, hasHash []uint16 var err error for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := []byte(key) for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) cutoff := 2 * common.HashLength succ.Write(curr.Bytes()[:cutoff-1]) succ.WriteByte(curr.Bytes()[cutoff-1] + 1) if _, _, _, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } builtHash := hb.rootHash() if trieHash != builtHash { fmt.Printf("Trie built: %s\n", hb.root().fstring("")) fmt.Printf("Trie expected: %s\n", tr.root.fstring("")) t.Errorf("Expected hash %x, got %x", trieHash, builtHash) } fmt.Printf("groups: %d\n", len(groups)) } func TestEmbeddedStorage11(t *testing.T) { keys := []struct { k []byte v []byte }{ { k: common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae9800000000000000010d2f4a412d2809e00f42a7f8cb0e659bddf0b4f201d24eb1b2946493cbae334c"), v: common.FromHex("496e7374616e6365000000000000000000000000000000000000000000000000"), }, { k: common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae98000000000000000123a5384746519cbca71a22098063e5608768276f2dc212e71fd2c6c643c726c4"), v: common.FromHex("65eea643e9a9d6f5f2f7e13ccdff36cf45b46aab"), }, { k: common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae980000000000000001387a79e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, { k: common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae980000000000000001a8dc6a21510692d70d47860a1bbd432c801d1860bfbbe6856756ad4c062ba601"), v: common.FromHex("53706f7265000000000000000000000000000000000000000000000000000000"), }, { k: common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae980000000000000001dee260551c74e3b37ed31b6e5f482a3ff9342f863a5880c9090db0cc9e002750"), v: common.FromHex("5067247f2214dca445bfb213277b5f19711e309f"), }, { k: common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae980000000000000001fe59747b95e3ddbc3fd7e47a8bdf2465d2d88a030c9bd19cc3c0b7a9860c0d5f"), v: common.FromHex("01"), }, } hb := NewHashBuilder(true) var succ bytes.Buffer var curr bytes.Buffer var groups, hasTree, hasHash []uint16 var err error for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := key.k for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(key.v)}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) cutoff := 2 * (common.HashLength + common.IncarnationLength) succ.Write(curr.Bytes()[:cutoff-1]) succ.WriteByte(curr.Bytes()[cutoff-1] + 1) if _, _, _, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(keys[len(keys)-1].v)}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } builtHash := hb.rootHash() fmt.Printf("%d, %x, %d, %x\n", cutoff, builtHash, len(hb.hashStack), hb.hashStack) //if trieHash != builtHash { // fmt.Printf("Trie built: %s\n", hb.root().fstring("")) // fmt.Printf("Trie expected: %s\n", tr.root.fstring("")) // t.Errorf("Expected hash %x, got %x", trieHash, builtHash) //} fmt.Printf("groups: %d\n", len(groups)) } func TestAccountsOnly(t *testing.T) { keys := []struct { k []byte v []byte }{ {k: common.FromHex("10002a312d2809e00f42a7f8cb0e659bddf0b4f201d24eb1b2946493cbae334c"), v: common.FromHex("01")}, {k: common.FromHex("10002a412d2809e00f42a7f8cb0e659bddf0b4f201d24eb1b2946493cbae334c"), v: common.FromHex("01")}, {k: common.FromHex("10002b412d2809e00f42a7f8cb0e659bddf0b4f201d24eb1b2946493cbae334c"), v: common.FromHex("01")}, {k: common.FromHex("10009384w46519cbc71a22098063e5608768276f2dc212e71fd2c6c643c726c4"), v: common.FromHex("01")}, {k: common.FromHex("10009484w46519cbc71a22098063e5608768276f2dc212e71fd2c6c643c726c4"), v: common.FromHex("01")}, {k: common.FromHex("1000a9e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01")}, {k: common.FromHex("110006a1510692d70d47860a1bbd432c801d1860bfbbe6856756ad4c062ba601"), v: common.FromHex("01")}, {k: common.FromHex("120006a1510692d70d47860a1bbd432c801d1860bfbbe6856756ad4c062ba601"), v: common.FromHex("01")}, {k: common.FromHex("121006a1510692d70d47860a1bbd432c801d1860bfbbe6856756ad4c062ba601"), v: common.FromHex("01")}, {k: common.FromHex("200c6a21510692d70d47860a1bbd432c801d1860bfbbe6856756ad4c062ba601"), v: common.FromHex("01")}, } hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var groups, hasTree, hasHash []uint16 var err error i := 0 hc := func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error { if hasHash == 0 && hasTree == 0 { return nil } i++ switch i { case 1: require.Equal(t, common.FromHex("0100000002"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b10000000000)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b000)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 2: require.Equal(t, common.FromHex("01000000"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b1000000100)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b100)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 3: require.Equal(t, common.FromHex("01"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b100)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b001)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 4: require.Equal(t, common.FromHex(""), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b10)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b10)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) } return nil } for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := key.k for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } succ.WriteByte(16) if curr.Len() > 0 { groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, hc /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(key.v)}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) if _, _, _, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), []byte{}, hb, hc /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(keys[len(keys)-1].v)}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } require.Equal(t, 4, i) } func TestBranchesOnly(t *testing.T) { keys := []struct { k []byte hasTree bool }{ {k: common.FromHex("0100000002000a03"), hasTree: false}, {k: common.FromHex("0100000002000a04"), hasTree: true}, {k: common.FromHex("01000000020b"), hasTree: false}, {k: common.FromHex("010000000900000103"), hasTree: false}, //{k: common.FromHex("010000000900000104"), hasTree: false}, //{k: common.FromHex("010000000900000203"), hasTree: false}, //{k: common.FromHex("010000000900000204"), hasTree: false}, {k: common.FromHex("010000000901"), hasTree: false}, {k: common.FromHex("010000000a"), hasTree: false}, {k: common.FromHex("0101"), hasTree: false}, {k: common.FromHex("010200000a"), hasTree: false}, {k: common.FromHex("010200000b"), hasTree: false}, {k: common.FromHex("0201"), hasTree: false}, } hb := NewHashBuilder(false) var succ, curr bytes.Buffer var groups, hasTree, hasHash []uint16 var err error i := 0 hc := func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error { if hasHash == 0 && hasTree == 0 { return nil } i++ switch i { case 1: require.Equal(t, common.FromHex("0100000002000a"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b11000)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b1000)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 2: require.Equal(t, common.FromHex("0100000002"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b100000000000)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b1)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 3: require.Equal(t, common.FromHex("0100000009"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b10)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b0)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 4: require.Equal(t, common.FromHex("01000000"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b11000000100)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b01000000100)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 5: require.Equal(t, common.FromHex("01020000"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b110000000000)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b0)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 6: require.Equal(t, common.FromHex("01"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b10)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b101)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 7: require.Equal(t, common.FromHex(""), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b10)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b10)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) } return nil } for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() succ.Write(key.k) if curr.Len() > 0 { groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, hc /* hashCollector */, &GenStructStepHashData{common.Hash{}, key.hasTree}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) if _, _, _, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), []byte{}, hb, hc /* hashCollector */, &GenStructStepHashData{common.Hash{}, false}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } require.Equal(t, 7, i) } func TestStorageOnly(t *testing.T) { //acc := common.FromHex("fff9c1aa5884f1130301f60f98419b9d4217bc4ab65a2976b41e9a00bbceae980000000000000001") keys := []struct { k []byte v []byte }{ { k: common.FromHex("500020e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, { k: common.FromHex("500021e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, { k: common.FromHex("500027e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, { k: common.FromHex("5000979e93fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, { k: common.FromHex("5000a7e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, { k: common.FromHex("600a79e493fff57a9c96dc0a7efb356613eafd5c89ea9f2be54d8ecf96ce0d28"), v: common.FromHex("01"), }, } hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var groups, hasHash, hasTree []uint16 var err error i := 0 hc := func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error { if hasHash == 0 && hasTree == 0 { return nil } i++ switch i { case 1: require.Equal(t, common.FromHex("05000000"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b100)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b0)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 3: require.Equal(t, common.FromHex("05000000"), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b100)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b000)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 4: require.Equal(t, common.FromHex(""), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b0)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b100000)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 5: require.NoError(t, fmt.Errorf("not expected")) } return nil } for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := key.k for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } if len(key.k) == 32 || len(key.k) == 72 { succ.WriteByte(16) } if curr.Len() > 0 { groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, hc /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(key.v)}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) if _, _, _, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, hc /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(keys[len(keys)-1].v)}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } require.Equal(t, 2, i) } func TestStorageWithoutBranchNodeInRoot(t *testing.T) { trace := false keys := []struct { k []byte hasTree bool }{ { k: common.FromHex("500020"), hasTree: true, }, { k: common.FromHex("500021"), hasTree: false, }, { k: common.FromHex("500027"), hasTree: false, }, } var i int hc := func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error { if hasHash == 0 && hasTree == 0 { return nil } i++ switch i { case 1: require.Equal(t, common.FromHex("0500000002"), keyHex) //require.Equal(t, fmt.Sprintf("%b", uint16(0b10000011)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b10000011)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b1)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) case 2: require.Equal(t, common.FromHex(""), keyHex) require.Equal(t, fmt.Sprintf("%b", uint16(0b0)), fmt.Sprintf("%b", hasHash)) require.Equal(t, fmt.Sprintf("%b", uint16(0b100000)), fmt.Sprintf("%b", hasTree)) require.NotNil(t, hashes) } return nil } hb := NewHashBuilder(false) var curr, succ bytes.Buffer var currhasTree, succhasTree bool var groups, hasTree, hasHash []uint16 var err error for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() for _, b := range key.k { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } currhasTree = succhasTree succhasTree = key.hasTree if curr.Len() > 0 { v := &GenStructStepHashData{common.Hash{}, currhasTree} groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, hc /* hashCollector */, v, groups, hasTree, hasHash, trace) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() currhasTree = succhasTree v := &GenStructStepHashData{common.Hash{}, currhasTree} // Produce the key which is specially modified version of `curr` (only different in the last nibble) if _, _, _, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), []byte{}, hb, hc /* hashCollector */, v, groups, hasTree, hasHash, trace); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } require.Equal(t, 2, i) } func Test2(t *testing.T) { keys := []struct { k []byte v []byte }{ { k: common.FromHex("000000"), v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), }, { k: common.FromHex("000001"), v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), }, { k: common.FromHex("000009"), v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), }, //{ // k: common.FromHex("000010"), // v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), //}, //{ // k: common.FromHex("000020"), // v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), //}, { k: common.FromHex("01"), v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), }, { k: common.FromHex("02"), v: common.FromHex("0100000000000000000000000000000000000000000000000000000000000000"), }, } hb := NewHashBuilder(false) var succ bytes.Buffer var curr bytes.Buffer var groups, hasTree, hasHash []uint16 var err error for _, key := range keys { curr.Reset() curr.Write(succ.Bytes()) succ.Reset() keyBytes := key.k for _, b := range keyBytes { succ.WriteByte(b / 16) succ.WriteByte(b % 16) } //succ.WriteByte(16) if curr.Len() > 0 { fmt.Printf("send: %x\n", succ.Bytes()) groups, hasTree, hasHash, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error { return nil }, /* hashCollector */ &GenStructStepHashData{Hash: common.BytesToHash(key.v)}, groups, hasTree, hasHash, false) if err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } } } curr.Reset() curr.Write(succ.Bytes()) succ.Reset() // Produce the key which is specially modified version of `curr` (only different in the last nibble) if _, _, _, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error { return nil }, /* hashCollector */ &GenStructStepHashData{Hash: common.BytesToHash(keys[len(keys)-1].v)}, groups, hasTree, hasHash, false); err != nil { t.Errorf("Could not execute step of structGen algorithm: %v", err) } }